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Figure 1: Overview of the immersive video training. (A) Reconstructs 3D motion from video. (B) Visualizes key indicators and
provides quantitative evaluations. (C) Simulates one-on-one competitions, bridging virtual practice and real world.
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Abstract

Video plays a crucial role in sports training, enabling participants
to analyze their movements and identify opponents’ weaknesses.
Despite the easy access to sports videos, the rich motion data within
them remains underutilized due to the lack of clear performance
indicators and discrepancies from real-game conditions. To ad-
dress this, we employed advanced computer vision algorithms to
reconstruct human motions in an immersive environment, where
users can freely observe and interact with the movements. Basket-
ball shooting was chosen as a representative scenario to validate
this framework, given its fast pace and extensive physical contact.
Collaborating with experts, we iteratively designed motion-related
visualizations to improve the understanding of complex movements.
A one-on-one matchup simulating real games was also provided,
allowing users to compete directly with the reconstructed motions.
Our user studies demonstrate that this method enhances partici-
pants’ movement comprehension and engagement, while insights
derived from interviews inform future immersive training designs.
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1 Introduction

Video, a vital medium for information in modern sports, has be-
come integral to how people engage in physical activity. Sports
enthusiasts often review their own training footage to identify areas
for improvement, while athletes analyze match videos to recog-
nize opponents’ behavioral patterns and better prepare for future
competitions. As such, the effective use of sports video holds great
potential for enhancing athletic performance.

(A) Invisible Body Movements (B) Different Focal Points

——————— )

(2) Athlete's View

(1) Broadcast View

Figure 2: Potential differences between the third-person view
in sports videos and the athlete’s first-person view.
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In recent years, video-based analysis has provided valuable in-
sights into team strategies [19]. Besides strategic planning, indi-
vidual athletes’ technical skills are also key determinants of game
outcomes. While these skills and movements are embedded within
game videos, fully extracting and utilizing this information presents
significant challenges. First, the performance of movements
is difficult to present in a quantifiable manner. Beyond basic
statistics (e.g., race time), motion analysis relies on sport-specific
indicators [26], such as stride length. These indicators vary by
sport and context (e.g., offense vs. defense), often targeting specific
body parts. Determining them demands substantial domain knowl-
edge. Moreover, manually recording motion-related indicators from
videos is labor-intensive, which further raises the bar for analysis.
Second, fixed camera angles may make it hard to observe all
aspects of movements. As shown in Fig. 2(A1), some body parts
(e.g., right arm) may be occluded. Traditional videos also lack depth
information, affecting the accurate perception of 3D aspects like
an arm swing’s trajectory. While fixed viewpoints remain widely
used, complementary methods can capture more details of complex
movements. Third, movements observed in videos often differ
from those perceived in real matches. Insights from pre-match
video analysis are not always directly applicable in real games. For
example, a stroke clearly visible in broadcast view (Fig. 2(A1)) may
be obscured from the athlete’s perspective (Fig. 2(A2)), making the
stroke technique harder to judge. Likewise, from a third-person
perspective, viewers can detect the ball handler’s intent to fake a
shot through subtle leg cues (Fig. 2(B1)). Yet in head-to-head com-
petition, inexperienced defenders are easily distracted by the ball
(Fig. 2(B2)), and often miss these cues. Athletes must adapt to this
perceptual gap to react effectively in real games.

Recognizing the limitations of traditional sports videos, we turn
to immersive training [12], which features realistic scenario re-
construction and in-situ interaction, often supported by technolo-
gies such as VR and MR. Although multi-angle videos can help
mitigate perspective limitations, the effort required for capturing
and the need for careful synchronization and management limits
their use in regular training—especially for individuals. Further-
more, immersive environments offer unique benefits: they support
depth and spatial perception, which are essential for accurately
judging and responding to fast, dynamic actions (e.g., hitting a
fastball)—capabilities not available in standard 2D video.

Despite these advantages, acquiring motion data for immersive
environments often relies on wearable motion capture devices,
which are expensive and impractical for capturing opponents. In
contrast, sports videos are rich in motion data and widely accessi-
ble, yet remain underutilized as a resource for immersive training.
To bridge this gap, we propose a proof-of-concept approach that
immerses users into sports videos, enabling first-person interac-
tion with opponents reconstructed from video. Recent advances in
video-based 3D motion reconstruction [22, 49, 64] make it possible
to combine the accessibility of video with the perceptual advantages
of immersive environments, expanding training opportunities.

In this work, we present an immersive sports training approach
that enables trainees to analyze and interact with video-captured
human motions. Focusing on basketball shooting, we collaborate
with domain experts to identify key performance indicators and
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design immersive visualizations that connect motion data with per-
formance insights. We also simulate one-on-one matchups, allow-
ing users to practice both offense and defense against video-based
opponent actions. User studies validate the effectiveness of our
visualizations and simulations. Our main contributions are:

o A design study with domain experts to identify key challenges
and tasks in the current use of video for sports training.

o A proof-of-concept training method that immerses users in sports
video scenes, enabling motion analysis through visualizations or
match simulation via interaction with virtual characters.

o User studies assessing the effectiveness of immersive basketball
training, along with insights derived from interviews.

2 Related Work

In this section, we discuss relevant studies, including motion-related
visualization, immersive training, and motion reconstruction.

2.1 Motion-Related Visualization

As motion capture technology advances, interpreting motion data
becomes increasingly important [62]. Due to their intuitive nature,
motion-related visualization have proven effective for understand-
ing complex movements [43, 47]. We categorize these visualizations
by the motion attributes they emphasize.

Trajectory Guidance. Trajectories intuitively represent direc-
tion and position, and are widely used in immersive sports analytics
[15]. For example, AvatAR [46] embedded 3D trajectories alongside
virtual avatars in immersive environments to enhance the under-
standing of complex movements. Similarly, Reactive Video [16]
used trajectories to provide real-time feedback, enabling users to
compare their arm movements against standards and make immedi-
ate adjustments. Various techniques also visualize directional data
[52, 57, 62]. PoseCoach [35], for instance, uses glyphs to highlight
key joint angles and positions for running posture coaching.

Body Part Augmentation. In physical activities, certain body
parts are often augmented to highlight key muscle actions [9, 44, 55].
Semeraro et al. [47] highlighted major muscle groups in fitness
videos to help beginners learn movements. Showcasing skeletal
joints is also a common visualization [13, 18, 20]. To analyze con-
tinuous skiing movements, Wang et al. [59] applied pose detection
to enhance posture and body contours in key frames. Some ap-
proaches use metaphors—for example, sharply extending parts of
the body that need to be stretched during dance [52]. Similarly,
our work highlights the virtual opponent’s body parts involved in
simulated physical contact during head-to-head competition.

2.2 Immersive Physical Training

Immersive training enhances user engagement by providing realis-
tic experiences and real-time feedback [29, 34, 50]. Many immer-
sive sports systems do not use real equipment, instead focusing
on equipment-free activities such as running [11] and martial arts
[21, 27]. For example, Pastel et al. [43] developed a Karate learning
system where trainees use motion capture to compare their move-
ments with standard ones in VR. For equipment-based sports, im-
mersive methods often recreate game scenarios, allowing trainees
to recognize and react without physical gear [23]. In baseball, head-
mounted displays [37, 66] and 3D screens [41] help players identify
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different pitches from the batter’s view. To improve spatial aware-
ness, Tsai et al. [56] placed users in a VR court to learn basketball
strategies, using location tracking to assess tactical awareness.
Immersive training can be further enhanced by incorporating
real sports equipment [40, 51], often through modified or sensor-
embedded gear. In racquet sports, SpinPong [61] used a sensor-
equipped racket to capture physical data during strokes. In addition,
ski simulators combined with Vive Trackers [60] enhance physical
sensations and support detailed motion analysis. Some approaches
use imperceptible data collection for real-time feedback. For in-
stance, Lin et al. [33] applied computer vision algorithms to capture
and visualize the in-situ trajectory of basketball free throws.
Current sports coaching systems often trade off ease of data
collection against the complexity of training tasks (Table 1). Com-
mercial tools like Catapult [7] and SkyCoach [8] primarily use
broadcast videos, limiting their applications to performance analy-
sis with minimal interaction involving athlete motion. In contrast,
immersive avatar-based systems focus more on motion demonstra-
tion. For example, VIRD [32] uses monocular badminton videos
for in-situ motion playback, but its core analysis relies on expert-
collected shot data rather than detailed motion analysis. More com-
plex tasks typically require additional hardware—avaTTAR [39],
for instance, supplements video data with IMU sensors, enabling
real-time side-by-side action comparisons. Still, most existing sys-
tems focus on visual guidance or comparison, without supporting
direct physical interaction with avatars. Therefore, our work estab-
lishes a cost-efficient framework, leveraging advanced computer
vision algorithms to convert accessible 2D video into 3D motion
representations. Through a proof-of-concept, we aim to demon-
strate that even simple data sources like video can support more
sophisticated interactive tasks (e.g., simulated basketball shooting
defense), opening new possibilities for immersive training.

2.3 Human Motion Reconstruction

Human motion capture has traditionally been a challenging task
due to its reliance on specialized equipment and controlled envi-
ronments [17, 24]. However, with the growing availability of video
data, recent advances have significantly improved motion recon-
struction from monocular video [31, 36, 48]. Many methods build
on end-to-end human mesh recovery frameworks [28], often us-
ing SMPL [38] parameters to reconstruct motion from video. For
example, CLIFF [30] incorporates full-frame location information
to enhance global motion awareness, while SLAHMR [63] extends
reconstruction to the world frame by decoupling video and motion,
enabling multi-person tracking in global coordinates.

Despite these advances, monocular methods still struggle with
occlusions and extreme poses [54, 58]. To address these challenges,
recent work has focused on improving robustness in such condi-
tions. MAED [65] introduces a multi-level attention mechanism that
learns spatial, temporal, and joint-level cues to better reconstruct
occluded body parts. 4DHumans [22] adopts a transformer-based
architecture for reliable reconstruction and tracking under partial
visibility. Given their effectiveness, such methods have been suc-
cessfully applied to sports video, yielding reliable results [14, 32].
In our work, we leverage these advances in human mesh recovery
algorithms to extract motion from monocular video.
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Input Source Interaction Mode

Visualization Types

Feedback Sport & Task Specificity

Catapult [7] monocular video
VIRD [32]

VR Karate [43]
VR Basketball [56]

avaTTAR [39]

video replay
monocular video motion demo
mocap system guided demonstration
synthetic animation ~ guided demonstration

video with sensor real-time comparison

co-related visualizations visual
situated 3D visualizations  visual
on-body visualization visual
on-field trajectory

on-body & detached cues

football performance report
badminton game analysis
karate movement learning
visual & audio basketball tactical training

visual, real-time  table tennis training

Table 1: Comparison of representative sports coaching and immersive avatar-based training systems.

3 Formative Study

In this section, we present expert interviews, summarize challenges
in video-based sports training, and outline tasks for different goals.

3.1 Expert Interview

Different types of sports emphasize distinct aspects of movement.
For example, performance-focused sports (e.g., gymnastics) prioritize
precision and speed, while head-to-head sports (e.g., basketball, table
tennis) focus on competitive interaction. Similarly, the role of video
varies across sports contexts: training recordings are often used to
capture running postures, while match broadcasts support tactical
analysis of opponents in table tennis.

To gain generalizable insights into video applications across di-
verse sports contexts, we collaborated with four seasoned experts
(E1-E4) with extensive cross-sport experience: 1) E1 is a trainer for
the national table tennis team and a professor of sports science,
known for his leadership in international sports academia; 2) E2,
a former professional table tennis player, is now a researcher spe-
cializing in the tactical analysis of racket sports, including tennis
and badminton; 3) E3 is a university professor focusing on invasion
team sports, such as basketball and soccer, and data-driven training
methods. 4) E4 is a university lecturer who teaches fundamental
sports skills, such as basketball, orienteering, and yoga, with a focus
on coaching beginners. This collaboration aimed to validate our
research motivation, identify typical challenges of using videos for
sports training, and inform a potential improvement framework.

Informed by expert profiles, we conducted semi-structured, one-
on-one, in-person interviews, each lasting approximately 40 min-
utes. The interviews were organized into two main sessions:
Sample Video Presentation and Documentation. First, we con-
structed a sample set of 15 sports videos, organized into three
categories—skill instruction, match broadcasts, and training record-
ings—with each category containing videos from five sports: basket-
ball, table tennis, orienteering, gymnastics, and volleyball. Experts
reviewed videos by category and described how they incorporated
these videos into their workflows, sharing practical examples. The
responses revealed varied roles for each video type:

o E1 values match broadcasts most for analyzing and explaining
opponents’ tactical characteristics to team members. He also uses
training recordings for targeted exercises with each player. As he
works primarily with high-level players, skill instruction is rarely
used except when explaining concepts to non-professionals.

e E2 works in a similar context to E1 but places even greater empha-
sis on match broadcasts. He systematically breaks down each rally,
documenting the details of every stroke technique to support
data-driven tactical insights.

o E3 mainly uses training recordings to monitor participants’ phys-
ical capabilities (e.g., reaction time), combining video with dia-
grams. Other types mainly serve as illustrative tools in teaching.

e E4 specializes in creating skill instruction videos for beginner
teaching. During the COVID-19 pandemic, she leveraged these
videos for online courses and required students to submit training
recordings for review and grading.

Semi-Structured Questioning and Brainstorming. Next, we

began with open-ended questions tailored to each expert’s work

context, aiming to explore their views on current video usage. Exam-
ple questions included: “Have you encountered any problems when
using match broadcasts for pre-match preparation?” and “If training
recordings could be enhanced, what specific features would you find
most beneficial?” Their responses revealed crucial limitations like
technical constraints (e.g., lack of multi-angle views) and practical
challenges (e.g., differing perspectives on opponent movements).

Following this, we held a brainstorming session, inviting sugges-

tions for potential improvements without immediate evaluation.

The suggestions included: “Introducing multi-angle playback for skill

instruction videos.” and “Expanding videos with customizable content

(e.g., real-time speed presentation) and interactive features.” After the

interviews, we conducted content analysis: responses were tran-

scribed and coded by research objective (e.g., “common challenges”,

Sec. 3.2), and grouped into themes like “motion clarity,” “interactiv-

ity, and “customization needs.” This analysis clarified commonalities

and differences in video use, detailed in later sections.

3.2 Problem Characterization

A key commonality is that videos generally serve as effective al-
ternatives to live demonstrations and instructions from coaches,
supporting participants at all skill levels (from beginners to profes-
sionals). Their primary applications can be categorized into two
distinct purposes: 1. Motion Demonstration (“clarity”) - Helping
trainees understand complex movements and evaluate their per-
formance, with the ultimate goal of refining their skills. 2. Motion
Reaction (“interactivity”) - Guiding trainees to adapt to opponents’
movements and practice appropriate responses, aimed at enhanc-
ing their ability to counter those movements. Additionally, videos
should be tailored to the specific requirements of each sport (“cus-
tomization needs”). For example, table tennis videos need to fully
capture the ball’s trajectory and landing points on the table. Based
on these two purposes, we categorized the relevant challenges:

P1 Video often fails to fully capture movement details (Demon-
stration). Many sports videos do not always capture every
movement detail, and sometimes even lose crucial information.
E2 noted, “When annotating table tennis videos, we often en-
counter situations where the player’s lower body is obscured by
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the table, forcing us to infer their footwork based on our experi-
ence.” Although filming from multiple angles can alleviate this
issue, it also complicates data collection and increases the time
required to analyze matches.

P2 Evaluating movement quality in videos is complex (Demon-
stration). Straightforward metrics for certain movements may
only partially reflect the movement’s overall quality. For in-
stance, an athlete’s high shooting percentage in training does
not guarantee good performance in a game. Factors such as
slow shooting speed, which makes it easier for opponents to in-
terfere, must be considered when giving training advice. Thus,
assessing a movement requires an understanding of various
aspects of the sport, which can be challenging for those without
relevant knowledge. E4 stated, “In teaching, my primary task is
to clearly explain the key points of the movement so that beginners
can grasp it better. A simple demonstration is not enough.”

P3 The perspectives in real matches and videos differ sig-
nificantly (Reaction). Analyzing opponents’ technical move-
ments is regular in pre-match preparation. E1 and E2 shared
that they often have athletes watch representative plays from
their opponents to gain a deeper understanding of their tech-
nical characteristics. However, they noted that learning from
videos alone is insufficient, as the videos usually offer a third-
person perspective, which greatly differs from the first-person
view experienced in real games. This discrepancy can make it
challenging for athletes to quickly recognize the intent behind
their opponents’ movements.

P4 The movements in videos are not reactive (Reaction). In
current video training methods, athletes often find themselves
merely observing the movement without any chance to actively
engage with it. This one-way process especially poses a great
challenge for adversary sports like basketball, which empha-
size the interplay between offense and defense. When athletes
cannot have their choices and actions directly measured, a
disconnect between training and actual competition arises, af-
fecting the effectiveness of the training. E2 suggested, “If videos
could respond to athletes like a game does, I think training would
be a lot more fun and effective.”

Based on the challenges identified in expert interviews, we out-
line three tasks to improve current training methods:

T1 Reproducing 3D human motions from videos (P1).

T2 Immersing viewers in sports scenes within the video (P1, P3).

T3 Providing sport-specific visualization and interactive experi-
ences for movements (P2, P4).

3.3 Framework Overview

In summary, sports training with videos fulfills two complementary
needs: 1. Analyzing Motions - Helping users identify flaws in their
movements and refine their skills. 2. Simulating Matches - Allowing
users to practice against opponents in videos and better prepare for
real competitions. These two needs align directly with the core pur-
poses of video usage in sports training: Motion Demonstration
and Motion Reaction.

To overcome the limitations of 2D videos, we propose an immer-
sive video training framework that offers unique advantages such
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as in-situ interaction. This approach effectively fulfills both ana-
lytical and reactive demands. Our framework consists of three key
components: 1) Motion Data Extraction (Sec. 4): using advanced
computer vision algorithms to extract 3D motion data from videos
(Fig. 1(A)), providing input for both training needs; 2) Motion
Demonstration (Sec. 5): presenting key motion-related indicators
and providing quantitative evaluation to enhance clarity (Fig. 1(B));
3) Motion Reaction (Sec. 6): highlighting the interactive nature
between players in head-to-head sports, creating a simulated virtual
practice environment aligned with competition rules (Fig. 1(C)).

After consulting with experts, we selected basketball shooting as
arepresentative scenario to validate this framework. The choice was
motivated by its need to replicate realistic sports situations, address
complex evaluation metrics (e.g., shooting motion analysis), and
emphasize physical interactions between players (e.g., simulated
one-on-one competition).

4 Motion Data Extraction

In this section, we detail the process of extracting information about
athletes’ movements and equipment from sports videos of diverse
sources and formats (T1). We also demonstrate this process using
a monocular video sample (Fig. 3).

4.1 Pre-Settings: Hardware Requirements

To optimize video processing efficiency, we use a server equipped
with an Intel Xeon Gold 6226R CPU, 64GB of memory, and an
RTX3090 GPU. Given the variance in data quality among sports
videos, we focus on two validated video types: Multi-camera fixed-
view videos using EasyMocap [3, 49] for human motion reconstruc-
tion, and Single-camera fixed-view videos using 4DHumans [22],
both achieving state-of-the-art performance in their respective
tasks. We have completed motion data extraction for two validated
video types. For unfixed-view videos, such as players’ first-person
perspectives, frequent changes in the field of view and significant
camera parameter estimation errors in poor reconstruction qual-
ity. Given the widespread use of monocular sports videos and the
greater challenges they present compared to multi-view reconstruc-
tion, our pipeline focuses on the monocular video input.

4.2 Pipeline

We present an extensible process (Fig. 3) tailored for the validated
video inputs, with the following steps:

Data Preprocessing. Given the excessive computational resources
of 3D motion reconstruction, it is necessary to remove irrelevant
segments (e.g., picking up the ball) from the video to streamline the
process. In our example video, we utilize an automatic segmenta-
tion technique to detect shot-making events and isolate potential
shooting moments in each clip by tracking the 2D trajectory of the
basketball. The preprocessing step allows for manual verification
(5-10 mins) of start and end points for precise clipping. We start
with a lightweight YOLO detection model [45], processing video
frames at 77 FPS on our server, to locate the basketball in the 2D
frames (Fig. 3(A)). The top half of the video, manually designated
as a potential “ball flight area”, where any detected continuous
ball flight paths approaching the rim are automatically labeled as
“shooting segments”. Despite this automation, manual checks are
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Figure 3: The pipeline for reconstructing basketball shooting scenes from our monocular video sample.

still required to correct any YOLO detection errors or interference
from other basketballs. While this method greatly reduces the work-
load compared to manual editing, it still requires careful setup of
the recording location for sports videos.

Shooter Filtering and Human Motion Reconstruction. To dis-
tinguish the shooter from others in the video, we employ YOLO for
human detection, and MediaPipe [4] for skeletal joint detection of
visible individuals (Pose Prediction), achieving a processing speed
of 33 FPS. By matching the basketball’s flight trajectory with the
detected hand joints, we locate the individual performing the shoot-
ing action and the corresponding timepoint. Next, we isolate the
approximate region of the shooter’s complete motion and apply
masks to other individuals, providing input for 3D motion recon-
struction (Human Mesh Recovery). Here we utilize 4DHumans [22]
for this process as the example video is monocular. Subsequently,
we import the reconstructed results into Blender to review the mo-
tion quality from multiple perspectives (25-30 mins). Due to factors
such as lighting and shadows, potential deviations along the z-axis
may occur, such as the athlete floating or the feet sinking below the
ground in few cases. Therefore, it is essential to check the z-axis
of human motion properly to ensure a stable stance is maintained
while stationary on the court.

3D Ball Trajectory Estimation. Accurately restoring 3D ball tra-
jectories with multi-camera setups requires processes such as cam-
era calibration, time synchronization, 2D tracking, and triangula-
tion. As for single-camera setups, the lack of depth information in
2D views forces us to rely on estimation methods, which compro-
mises the accuracy of trajectory reconstruction. We first extract
the 2D positions of the basketball from the moment it leaves the
shooter’s hand until it hits the rim, and fit them into a parabolic
trajectory (2D Trajectory Fitting). Next, based on the original video,
we manually mark the shot position on the 3D court model and,
together with the rim position, determine the vertical plane of the

ball’s trajectory (Fig. 3(B)). Finally, using the fitted parabolic func-
tion, we estimated a 3D shooting trajectory that lies approximately
near the release-to-hoop plane, based on the ball’s release position.

In the final phase, we adjust the virtual player’s position co-
ordinates by scaling and alignment, and fine-tune the basketball
trajectory using rule-based methods, such as ensuring the ball is
always held in hand before shooting. It is worth noting that our
processing pipeline is tailored to the specific basketball training
scenario addressed in this work. Based on our experience with a
5-minute example video, the total processing time is about 6 hours:
around 4.5 hours for automatic image processing, roughly 1 hour
for manual fine-tuning and validation, and the rest for steps like
data transfer. Most of the time is consumed by image processing,
especially motion reconstruction with 4DHumans. In the future,
we plan to explore more efficient models or increase computational
resources to speed up processing. Example processing code is pub-
lished at https://github.com/qinwyh/SportsVideos.

4.3 Evaluation: Objective & Subjective Analysis

Objective Evaluation. We evaluate the accuracy of our 3D re-
construction by comparing it to more reliable multi-view recon-
struction methods [3] due to the difficulty of obtaining high-quality
ground-truth motion and ball data for in-the-wild basketball videos.
During our data collection, we set up three or more additional cam-
eras (not including the monocular view) to capture the same session,
and use the multi-view reconstruction results as a reference for
quantitative evaluation of 3D motion and ball trajectory accuracy.
For our test data, the Procrustes-aligned mean per joint position
error (PA-MPJPE) for motion reconstruction was 87.5 mm, and the
average 3D distance error for the ball trajectory is 0.52 meters.
These values indicate that, in terms of numerical accuracy, there
are still errors in the reconstructed body motion and ball trajectory,
and there remains considerable room for improvement. However,
this evaluation is itself not absolutely rigorous because multi-view
reconstruction is not entirely error-free. Considering the core focus
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of our work is not to achieve the utmost reconstruction accuracy
but the whole interactive training framework, we further conduct a
subjective evaluation of our 3D reconstruction on user experience.

Subjective Evaluation. In addition to the quantitative valida-
tion, we further assessed the practical usability of our reconstruc-
tions from a user perspective. In Module Usability Study 2, we
invited five university-level basketball players and ten regular en-
thusiasts (none of whom participated in other parts of the study)
to evaluate five pairs of original training videos and their corre-
sponding 3D reconstructions rendered in Blender, covering various
environments and participants. Participants rated the results on a
7-point Likert scale (1 = unacceptable, 7 = acceptable), focusing on
overall quality, motion fluidity, key joint articulation (e.g., elbows
and hands), and ball trajectory (e.g., release angle and flight path).
The enthusiast group gave an average score of 5.9 (STD = 0.88), and
the player group scored 5.8 (STD = 1.10); all subcategories received
average ratings above 5.5, indicating that the reconstructions were
generally acceptable for practical training use.

Limitations. Despite these positive subjective outcomes, several
limitations remain. First, relying on monocular video input can lead
to reduced accuracy, especially in cases of fast motion or occlu-
sion. However, our main goal is to establish a cost-effective video-
driven 3D motion reconstruction framework, leveraging existing
computer vision algorithms to convert easily accessible 2D video
into 3D motion representations. Through a proof-of-concept sys-
tem, we demonstrate that even simple data sources like monocular
video can support sophisticated interactive training tasks (e.g., sim-
ulated shooting defense), opening new possibilities for immersive
sports training. Should more accurate monocular reconstruction
or ball trajectory models become available in the future, they can
be seamlessly integrated into our pipeline. Second, while 4DHu-
mans [22] provides a solid technical foundation, its performance for
fine-grained basketball scenarios—such as hand-ball interactions
and subtle joint movements—has not been systematically validated,
which may affect the accuracy of technical feedback for certain
skills. It is worth noting that our current data extraction pipeline
is modular and designed for extensibility: more advanced pose
estimation or ball tracking models can be integrated to improve
reconstruction quality without modifying the core immersive train-
ing framework. Thus, while there are certain limitations, these
do not fundamentally undermine the practical applicability of our
approach in real-world training environments.

5 Motion Demonstration

In this section, we describe our collaboration with basketball ex-
perts to identify key indicators, the visualization design of shooting
motion analysis (T2, T3), and a use case to verify its effectiveness.

5.1 Pre-Study: Key Performance Indicators

To better understand basketball shooting scenarios, we reviewed
relevant literature [10, 53] and held discussions with E3 to identify
candidate performance indicators for shooting motions. Explana-
tory charts were created for all indicators to facilitate evaluation.
The identified indicators were categorized into two groups:

o Ball-related: Ball Speed, Spin Rate, Release Point, Arc Height, Flight
Time, Shot Release Angle, and Shot Entry Angle.
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Figure 4: The explanation of several key performance indi-
cators for shooting training,.

o Body-related: Knee Angle, Hip Angle, Elbow Angle, Release Angle,
Ankle Angle, Shoulder Angle, Elbow Height, Release Height, and
Release Time. Elbow Angle and Release Angle were combined into
a single indicator (Arm Swing Angle), resulting in 8 body-related
candidate indicators.

We collaborated with six experienced participants, including two
university basketball coaches (C1, C2), two university-level players
(A1, A2), and two enthusiasts (F1, F2), each with over 10 years of
playing experience. All participants were proficient in basketball
shooting training and none overlapped with E1-E4 or experiment
participants. A one-hour group discussion was conducted with
the participants. During the session, we presented each candidate
indicator along with its explanatory chart to ensure a clear under-
standing of its meaning. Participants then voted individually on
whether each indicator should be included in the shooting training
evaluation. To minimize peer influence, participants were asked to
provide brief explanations for their votes only after completing the
voting process. Indicators with more than two-thirds agreement
were selected and incorporated into motion demonstrations for
further analysis. In the end, three ball-related indicators (Release
Point, Shot Release Angle, Shot Entry Angle) and three body-related
indicators (Arm Swing Angle, Release Height, Release Time) were
chosen. A brief explanation is shown in Fig. 4.

5.2 Immersive Visualization Design

Based on the indicators established in Sec. 5.1, we progressively
optimized the design of the immersive video training system. This
involved close collaboration with three experts, including a coach
(C1), a player (A1), and an experienced enthusiast (F1). For each
indicator, we showed the experts multiple design alternatives and
provided an in-depth experience using an HMD. We then incor-
porated their feedback and made adjustments accordingly. After
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Figure 5: The visual design for shooting motion analysis. By wearing an HMD, users can explore reconstructed shooting motions
from basketball videos (A). Key indicators are shown through motion-related visualizations (B), (C), and (D). Detailed values for
each shot appear in (E), while the summary panel helps assess the consistency of consecutive shooting motions (F).

several iterations, we finalized the motion-related visualization
design they found most intuitive and effective.

In this training scenario, trainees utilize their own shooting
videos as input to thoroughly analyze their shooting techniques.
To offer a comprehensive view of shooting motions (P1, P2), we
integrate the reconstructed scenes and motion-related visualiza-
tions into an immersive environment (Fig. 5(A)). The player model
is sourced from Mixamo [5].

5.2.1 Motion-Related Visualizations.

Shot Arc. A series of 3D parabolic trajectories visualize ball-related
indicators (Fig. 5(B)). Trajectories are color-coded by outcome:
green for hits and red for misses, starting from the player’s Re-
lease Point and ending at the rim. To assess the consistency of
shot trajectories, the current shot and several previous ones are
displayed together. Users can adjust the number shown to identify
trajectory patterns associated with successful shots.

Arm Swing Angle. We use a blue arc to represent the Arm Swing
Angle during basketball shooting (Fig. 5(C)), from the player’s prepa-
ration phase to the release phase [10]. The arc updates in real-time
with the player’s arm movement, positioned near the release point
and aligned with the shot direction. Concentric arcs display the
consistency of arm swings between consecutive shots, with inner
arcs representing the angles of earlier shots.

Release Height. We employ orange cubes to depict the player’s
jump height at any moment (Fig. 5(D)). To minimize perspective-
related errors in height perception, a block-like design is employed
to quantitatively display the absolute height. The cube dynamically
changes with the player’s shooting motion, settling at the Release
Height once the ball is released. Transparency levels indicate the
sequence, with earlier shots appearing more transparent.

5.2.2 Motion Data Panels.

Based on expert feedback, while motion-related visualizations are
informative, they mostly offer a relative perception of indicators.
However, experts often seek specific numerical values. To fulfill

this need, we design two data panels to enhance usability, which
users can move by pressing the controller’s button and dragging.
Shot Selection Panel. As shown in Fig. 5(E), we provide a table-
like list, which displays the specific attributes of each shot, updating
in real-time as the motion plays. Each row includes a set of intuitive
2D visual elements (Single Shot Overview), arranged as follows: (1)
the Release Time indicated by the outer arc’s radius and the shot
success marked by colors, (2) the Shot Entry / Release Angle, (3) the
Arm Swing Angle depicted in blue, and (4) the Release Height shown
in a bar. Users can select a specific shot from the dropdown menu
or adjust the playback speed in the Selection Toolbar (Fig. 5(E)).
The visibility of visualizations attached to the virtual player can be
toggled using the checkbox at the bottom.

Shot Summary Panel. To offer an overview and evaluate the
consistency of all shooting motions, we design a summary panel
(Fig. 5(F)). The top part gives a general impression of shooting
performance, while the bottom part includes a line chart to track
changes in key indicators across consecutive shots.

5.3 Evaluation: A Usage Scenario

This section presents a potential usage scenario, designated as Mod-
ule Usability Study 2 for shooting motion analysis. The analysis
is based on an example video as the data source. As such, all in-
sights are practical suggestions from real-world footage, further
demonstrating the effectiveness of our approach.

Bob, a basketball enthusiast, is frustrated by his stagnant shoot-
ing accuracy. Despite repeatedly watching his training recordings,
he cannot figure out how to improve. Bob turns to our motion
analysis module, selects a training video, and recreates his shooting
practice (thirty shots) in an immersive environment. By examining
his movements and visualizations in detail, he hopes to identify
specific areas for improvement.

Insights. At first, Bob checked the shot summary panel (Fig. 5(F))
and saw he did well in his first few attempts (making 6 out of 7
shots), but his performance dropped in later attempts (missing 13
out of 23 shots). To find out the reason, he reviewed his shooting
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Figure 6: The use case based on our sample basketball video (Sec. 4).

motions and noticed that his shot arcs were somewhat inconsistent
(Insight1). His first 10 shots showed concentrated arcs (Fig. 5(B)),
leading to a higher success rate. However, from the 11th to the 20th
shot, his arcs spread out (Fig. 6(A)), resulting in a lower accuracy.
The inconsistency of his shot arcs was also evident in the shot entry
angles. While exploring the shot summary panel, Bob found that
the entry angles of his 11th to 20th shots showed some fluctuation
(Insight2, Fig. 6(B)). To see if there were any problems during
this phase, he compared his best five consecutive shots (3rd to 7th,
all successful) against his worst (14th to 18th, missing 4 out of 5),
closely examining the shooting motion and visualizations. He then
noticed that his arm swing angle (Fig. 6(C)) was very stable from
shot 3 to 7 but fluctuated considerably from shot 14 to 18. This led
Bob to realize that his arm was not swinging consistently in the
later shots, which contributed to the reduced accuracy (Insight3).
From this analysis, Bob concluded that he should focus on strength-
ening and stabilizing his arm. This would help keep his arm swing
within a stable, comfortable range on successive shots, improving
his overall shooting performance.

6 Motion Reaction

In this section, we detail our collaboration with experts to establish
competition rules and identify relevant indicators, as well as the in-
teraction with virtual opponents to simulate real-game competition
scenarios (T2, T3)

6.1 Pre-Study: Competition Rules

Competition rules are crucial in designing simulated competitions,
ensuring training scenarios closely replicate real-game conditions
and yield valuable insights. With E3’s guidance, we explored one-on-
one shooting training and its rules, which emphasizes the interplay
between shooter and defender. The focus shifts depending on the
trainee’s role: 1. On offense, trainees aim to maintain shooting ac-
curacy and stability under defensive interference. Key indicators
include shooting percentage, shot arc, arm swing angles, etc. 2. On
defense, trainees focus on disrupting the ball’s trajectory and ap-
plying spatial pressure (e.g., staying close or blocking vision) while
avoiding fouls like direct hand contact. These principles ensure
realistic offense-defense interactions.

To identify defense-related indicators (offense-related indicators
align with those for individual shooting training), we followed the
same process as in Sec. 5.1. Four candidate indicators were involved:
Closeout Speed, Anticipation Ability, Defensive Effectiveness, and
Defensive Timing. Collaborating with the same group of experts, we
finalized these indicators and iteratively refined the offense-defense
interaction design. The final selected indicators are:

o Defensive Effectiveness: In defense, there are four outcomes ranked
from best to worst: blocking the shot, applying defensive pres-
sure at release (in terms of position and height), failing to apply
pressure, and committing a foul.

o Defensive Timing: The time gap between the opponent’s shot
release and the defender’s jump peak, reflecting the defender’s
ability to anticipate the shot timing.

6.2 Interaction Design for Simulated Matches

To make video training in the immersive environment a more reac-
tive process (P3, P4), we design role-specific interaction methods
for one-on-one shooting training (Fig. 7). Trainees use their oppo-
nent’s video to face their movements from a first-person perspective,
simulating real-game conditions to enhance reaction abilities. This
aims to enhance users’ ability to recognize and respond to various
technical movements in a simulated manner.

6.2.1 Simulated Defense Practice.
When users act as defenders, the virtual player replicates the op-
ponents’ shooting motions reconstructed from videos. This allows
users to observe and defend against these motions from a first-
person perspective (Fig. 7(A)). In order to simulate the complexity of
a real game scenario, the virtual player’s shooting motions include
various types, such as quick shots (to avoid defensive interference)
and fake shots (to mislead the defender’s timing to jump).
Feedback on Defensive Performance. Users can lift hands
and interfere with the virtual opponent’s shot in a defensive man-
ner akin to a real game. We assess the user’s defensive quality in
this immersive environment using key indicators (Sec. 6.1), and
provide three types of feedback to support effective and intuitive
training: 1) Avatar-based visual feedback: To enhance immersion,
when potential physical contact occurs during defense, feedback is
directly overlaid on the virtual character. For example, in the case
of Commit A Foul (Fig. 7(B1)), when the user contacts the opponent
before touching the ball, the affected body part turns red. 2) Object-
based outcome feedback: If the user successfully blocks the shot
without making contact with the opponent, the ball turns green and
deflects, providing an immediate and clear indication of a successful
block (Fig. 7(B2)). 3) Performance panels: For cases without direct
contact, defensive pressure is evaluated by comparing the user’s
distance and height difference to the virtual player at the moment
of shot release, which is shown on a performance panel (Fig.7(B3)).
All defense attempts are also summarized on the Defense Summary
panel (Fig.7(A1)), where green indicates a successful block, red
indicates a foul, and yellow or blank denotes whether defensive
pressure was exerted. Since hand position is crucial for defense,
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Figure 7: The simulated one-on-one competition against a virtual opponent. When defending, users aim to recognize the virtual
player’s intentions, such as a real or fake shot (A), and adjust their defense based on performance feedback (B). When attacking,

users focus on maintaining shooting accuracy and stability (C) under the visual pressure of the opponent’s defense (D).

we keep the user holding the controllers throughout the defensive
practice despite the fact that many head-mounted displays (HMDs)
support hand tracking. This may slightly reduce immersion, but it
is a compromise to ensure the accuracy of the assessment results.

6.2.2  Simulated Offense Practice.
All visualization designs are implemented in a VR environment
for optimal display. However, shooting practice involving real ball
interaction requires an HMD with mixed reality (MR) support. In
our experiments, we used the PICO 4 [6] to enable MR functionality.
During simulated offense practice, the virtual opponent’s defen-
sive moves—extracted from real opponent videos—provide visual
interference to the user’s shooting attempts (Fig.7(D)). As a form
of reactive opponent feedback, these defensive actions are dynami-
cally triggered by the user: when the headset detects a jump (i.e., a
change in the user’s physical height), the virtual defender responds
by jumping simultaneously, thereby creating visual pressure on the
user (Fig.7(C)). If the user remains stationary for a period of time,
the virtual defender automatically resets to a ready position about
one step in front, preparing to respond to the user’s next action.

7 User Studies

In this section, we present three system-level user studies (System
User Study 1-3) to evaluate the effectiveness of our design for
shooting motion analysis (Sec.5) and simulated competition (Sec.6).

7.1 Comparative Study 1: Motion Analysis

In this experiment, we aim to verify whether immersive observa-
tion enhances users’ understanding of shooting motions. We also
collected user feedback to evaluate the effectiveness of each motion
visualization and data panel.

Baseline. We did not select raw video as the baseline due to uncon-
trollable variables, such as inherent differences from reconstructed
scenes. Instead, our baseline was the 2D version of the shooting
motion analysis module (Fig. 8(A)), which presents the same data
and visualization forms as the immersive system. Users can adjust
the camera’s position (via keyboard) and angle (mouse). The only
difference in presentation is the layout: the 2D system displays fixed
panels on the screen, while the immersive version uses floating

panels. Thus, the experimental variable is the overall presentation
format—3D immersive environment vs. 2D display.

Experiment Settings. Our system runs on PICO 4, while the base-
line system operates on a 16-inch laptop with a 2560x1600 resolution
display (i7 12700H CPU, 16GB RAM, RTX3060 GPU). Each system
contains 30 basketball shooting motions reconstructed from videos
of two different players. We designed a structured questionnaire
based on [42] to collect demographic data (e.g., age, gender) and
subjective evaluations of the systems using a 7-point Likert scale.
Participants rated statements for the learnability and usability of
the visualizations on a scale from 1 (strongly disagree) to 7 (strongly
agree), with all statements shown in Fig. 9(C, D). For each metric,
we provided participants with a brief explanation. For example,
intuitiveness refers to whether the motion-related visualizations
matched participants’ long-term experience and perception. The
systems also track spatial positions (headset/camera coordinates
in virtual space) and operations (number of camera angle changes
for the baseline) to compare the differences in user behaviors be-
tween 2D and 3D situations. The logged spatial data is visualized
with xy-coordinates in Fig. 9(A) and the z-coordinates in Fig. 9(B).
The experiment took place in a 6m x 6m empty indoor room, pro-
viding enough space for free movement. After the experiment, all
participants confirmed that they did not feel restricted by the space.
Procedures. We recruited 12 basketball enthusiasts from a univer-
sity (Male=7, Female=>5, Average Age=20.4 years, SD=2.54). Among
the participants, 4 had more than 5 years of basketball experience,

(A) Baseline System ‘(B) Immersive Environment

Figure 8: The 2D baseline and our immersive application.
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Figure 9: The results of our comparative study for shooting motion analysis. (A) displays participants’ movement patterns on
the XY plane while observing shooting motions on the court, (B) shows variations in participants’ viewpoint height, and (C),
(D) presents the participants’ subjective ratings from the post-study survey.

5 had 2-5 years, and 3 had less than 2 years. All participants were
new to using HMDs. Before the experiment, we taught them basic
controller use, checked for VR discomfort, and familiarized them
with both systems. Participants observed motions from different
players using the Baseline and the HMD, respectively, and discuss
their findings. The order of observation methods and player demon-
strations was counterbalanced. After experiencing each system,
participants immediately answered relevant questionnaire items.
After experiencing both systems, we interviewed them using mostly
open-ended, exploratory questions on the comparison between the
two systems. Their responses were recorded and documented for
analysis. The duration was approximately 30 minutes per partici-
pant, and compensation was in accordance with school standards.
Findings and Discussions. Drawing on the collected data and
interviews, we summarized the following findings:

e Participants tend to take on a different role when observ-
ing in 3D. From the user behavior data, we noticed that in a
2D context, users changed their viewpoint much more. As a rep-
resentative participant, P8 circled around the virtual player for
observation in 2D (Fig. 9(A1)), whereas in 3D, he mostly stood be-
side the virtual player (Fig. 9(A2)). P8 mentioned in the interview:
“When looking at the screen, I felt like a spectator, so I kept moving
the camera around to get different angles; but with the headset
on, I felt more like a defender on the court, trying to see if I could
block the shot.” This phenomenon is not isolated; in fact, similar
patterns appeared across all users. Although users on 2D screens
changed their viewpoint more frequently to closely examine the
movements, their “easy to understand” ratings were still lower
compared to the 3D motion demonstrations (Fig. 9(C)). This sug-
gests that 3D motion demonstrations in immersive environments

not only improve users’ understanding of movements but also
align better with their natural athletic habits.

Immersive environments offer a superior sense of mo-
tion by naturally aligning with the user’s gaze. As shown
in Fig. 9(B), participants frequently adjusted camera height in
2D scenarios, whereas in 3D, the viewpoint remained mostly at
head level. Based on user operations recorded from the 2D sys-
tem, this was due to the frequent repositioning of the camera in
the 2D screen to find optimal angles. In subjective feedback, 2D
also scored much lower on flexibility compared to 3D (Fig. 9(C)).
Therefore, we speculate that the immersive environment’s per-
spective allows users to observe the reconstructed sports scenes
as if they were present on-site, which aligns with their natural ob-
servation habits. This familiarity reduces cognitive load, allowing
users to understand motions and indicators without constantly
adjusting their view. As P10 mentioned: “Viewing motions in 3D
felt natural; I could see many details of the shooting motion just
by following the virtual person with my gaze. But I am not used to
operating the camera in 2D—it’s inconvenient as the virtual player
often jumps out of view when I zoom out.”

Visualizations directly related to key body movements may
need to ideally align with the motion direction. As shown
in Fig. 9(C, D), while the Arm Swing Angle scored decently in
intuitiveness and usefulness, it was the lowest-rated of all five
visualizations. To seek the reasons, we asked P9, who rated Arm
Swing Angle at 3 points, for her opinion: “Although the angle
moves with the arm and the body’s rotation, it does not fully match
the arm’s swing trajectory, which confused me in the initial shoot-
ing motions.” This revealed that for complex motions like arm
swings, which involve both circular (forearm rotation) and par-
abolic movements (player jumping), merely being close to the
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Figure 10: The results of study 2. (A) shows trends of participants’ defensive timing accuracy. The blue line shows the mean
trend and the black dashed line is the linear fit. (B) presents the participants’ subjective ratings.

key body parts might be insufficient. Such visualizations can
sometimes prevent observers from associating directly with the
movement, thus complicating understanding. Moreover, the lay-
out of visualizations directly linked to key body movements in
motion demonstrations can vary based on different design con-
siderations. Potential alternatives include displaying the visuals
directly on the body, integrating them on the court, or projecting
them onto a floating panel.

7.2 Effectiveness Study 2: Simulated Defense

This experiment aims to verify the effectiveness of interactions in
the one-on-one immersive video training scenario, particularly in
identifying the opponent’s movement intentions.

Experiment Settings. To simulate the real-world process of com-
petition preparation, our reconstruction pipeline used shooting
videos from YouTube to recreate 3 fake shots [1] and 3 regular
shots [2]. The virtual player’s preparation time and shooting mo-
tions were randomized to prevent users from anticipating defen-
sive actions, ensuring the training remained effective. During each
defensive attempt, we recorded participants’ defensive timing per-
formance in the immersive system. The experiment was conducted
indoors with enough space for free movement without interference.
Procedures. We recruited an additional 12 basketball enthusiasts
from a university (Male=7, Female=5, Average Age=21.6 years,
SD=3.73). Of the participants, 5 had over 5 years of basketball expe-
rience, 4 had 2-5 years, and 3 had less than 2 years. We familiarized
participants with basic VR/MR operations before starting. Since
the experiment involved physical movements, we followed school
requirements to sign an informed consent form with each partici-
pant to ensure their voluntary participation. Participants completed
30 consecutive defense attempts against randomly played fake or
direct shots reconstructed from videos. We counterbalanced the
sequence of encountering defenders and gathered feedback through
surveys and interviews afterward. The entire process took about
30 minutes per participant. Finally, we assessed the effectiveness
of this training method by comparing changes in defensive timing
judgment (Fig. 10(A)).

Findings and Discussions. Based on the recorded data and user
feedback, we present the following findings:

e The visual effects in simulated competition are effective
but not sufficient. As illustrated in (Fig. 10(A)), during the sim-
ulated defense practice, 10 users improved their defensive timing.
Based on subjective ratings, they were generally better at distin-
guishing between fake and direct shots in head-to-head scenarios
(scoring 5.5 out of 7 for Able to Identify’). As shown in Fig. 10(A),
participants’ defensive timing accuracy improved with short-
term training. In P18’s feedback, she mentioned, “Holding the
controller was uncomfortable during defense practice, and it didn’t
provide me with much physical feedback, like vibrating when I
hit the hand or the ball, which made the defense outcome less per-
ceptible to me.” Her feedback inspires us in two directions: in
cases where hand tracking modules are not accurate enough,
seamless devices with sensors, such as gloves equipped with po-
sition sensors, might offer a better experience; moreover, visual
feedback should be integrated with physical feedback to enhance
the overall training experience for users.

e Real-time feedback on physical contact with virtual op-
ponents enriches the defense practice experience. From
the participants’ subjective ratings, most found the first-person
perspective interaction with virtual characters to be easy to un-
derstand, with an average "intuitive" score of at least 6.2 out
of 7 (Fig. 10(B)). The effectiveness of visual feedback methods,
directly showcasing the results of physical contact on the virtual
opponent’s body, received particularly positive feedback. P14
mentioned in the interview: “Marking the invaded position on the
virtual player in red was very effective for my defense practice. My
defensive style in basketball had always been aggressive and bold,
and this method lets me know how to adjust my hand placement to
avoid hitting the shooter’s hand.” Overall, 4 out of 12 participants
specifically emphasized its effectiveness and enjoyment during
interviews, providing guidance for our future designs: interaction
outcomes with virtual avatars should ideally be integrated with
the data, not separated.
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Figure 11: The results of our effectiveness study for simulated offense practice.

7.3 Effectiveness Study 3: Simulated Offense

This experiment aims to verify whether immersing users in video-
based sports scenes can create a realistic competitive experience,
thereby enhancing user engagement in training.
Experiment Settings. During the motion reconstruction process,
we extracted several jump-defense actions from past game videos.
When the system detects a user’s jump (via a sudden increase in the
HMD’s physical height), the virtual defender jumps accordingly,
replicating the defense from the video and adding visual pressure
to the user’s shot (Fig. 7(D)). In addition, the experiment took place
on an indoor basketball court to ensure no interference.
Procedures. To ensure a diverse range of participant skill levels,
we recruited 12 participants, comprising six basketball enthusi-
asts (Male=3, Female=3, Average Age=21.8 years, SD=1.86) and six
semi-professional basketball players (Male=5, Female=1, Average
Age=21.3 years, SD=2.05). They were divided into two groups, the
enthusiasts (P25-P30) and the high-level players (P31-P36), for sep-
arate analysis. This grouping was essential for this experiment,
which involved collecting participants’ shooting motion data. For
enthusiasts, performing a series of continuous shots was inherently
challenging and their motions are usually unstable even without
HMDs. This made it unclear whether the instability stemmed from
the visual pressure of the virtual defender or their limited shoot-
ing skills. Hence, grouping participants by skill level allowed us to
control for this variable, ensuring more accurate conclusions.
Prior to the experiment, participants completed a baseline task,
which involved performing 50 jump shots from the same position
on the court. These shots were recorded using a fixed camera setup

to capture their shooting motions for analysis. After confirming
sufficient recovery, participants were introduced to the MR envi-
ronment via a head-mounted display (HMD) to adjust to the virtual
setup. They then completed two additional sets of 50 jump shots
under two conditions: (1) without a virtual defender (HMD + MR
View) and (2) with a virtual defender (HMD + virtual defender). The
order of conditions was randomized and counterbalanced. Sufficient
rest was provided between shots to avoid fatigue and ensure con-
sistent performance. All shooting sessions were recorded, and key
motion metrics such as release height and arm swing angle were
semi-automatically extracted using image processing algorithms.
The distribution of shot release angle and shot entry angle across all
participants’ shots can be observed in Fig. 11(D, E). The total dura-
tion for each participant varied, ranging from 40 to 100 minutes. In
the end, participants provided subjective feedback regarding their
experience in both conditions.

Findings and Discussions. Drawing on the collected data and
interviews, we summarized the following findings:

e Both MR environment and virtual defender’s reactions im-
pacted the stability of users’ shooting motions. Based on
the shot performance data (Fig. 11(B)), there was a noticeable
drop in accuracy when using the MR headset, with an average
decrease of 16.2%, and an additional decrease of 7.3% due to the
presence of the virtual defender. Notably, the high-level group ex-
perienced more significant declines in accuracy (20.7% and 8.3%,
respectively). We suspect this is because the MR environment and
virtual defender’s movements disrupted the more stable shooting
motions of skilled players, making the impact more noticeable.
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This can be seen in the standard deviations of their jump heights
(Fig. 11(A)) and arm swing angles (Fig. 11(C)). For example, in
normal jump shots without the headset, P31-P36 had much lower
standard deviations in both jump height and arm swing angle,
reflecting their consistent shooting performance (74%-94% accu-
racy without the HMD). However, after transitioning to the MR
environment, their movements became significantly less stable,
with P31-P36 showing the largest standard deviations in jump
height under the HMD + virtual defender condition. In contrast,
enthusiasts, who lack professional training and whose shooting
form is inherently less stable, were less affected by the virtual
environment and defensive actions.

o Visual defensive pressure closely simulates real shooting
competition, prompting strategic adjustments in trainees.
During player interviews, three high-level athletes (P31, P33,
P34) mentioned, “The virtual defender made me opt for a higher-
arc shot.” P33 also noted, “Just having the virtual defender there
pushed me to intentionally use a higher arc, which was very effective
for training.” This was reflected in their shooting release points,
though the angle change was minimal for the high-level group
(<1 degree) due to their consistent shooting form. In contrast, the
amateur group showed greater variation. For example, P25 and
P26 had noticeably earlier arm swing endpoints under the virtual
defender condition compared to HMD + MR View (Fig. 11(C)).
Overall, 10 out of 12 participants had earlier arm swing endpoints
with the virtual defender, except for P27 and P35. These findings
suggest that, even when users know the defender won’t block the
shot, visual pressure still induces realistic behavioral adaptation.

8 Discussion

In this section, we present the lessons learned and discuss the gener-
alizability and limitations of our framework. Immersive techniques
have been widely used to enhance training experiences by enabling
intuitive perception of 3D motions. However, the motions captured
in controlled lab environments are often disconnected from real-
world context. Preserving this context is important for understand-
ing the purpose of specific actions and supporting motion learning
across sports. Besides basketball, this video processing pipeline,
design study, and user evaluations can inform the development of
motion learning systems in other domains.

8.1 Motion Related Data in Context - Motion
Demonstration

Analyzing motion through video reconstruction is a growing trend
[16, 35], particularly given the extensive foundational data analy-
sis work already based on video. Compared to traditional motion
capture methods, video-based techniques can integrate more seam-
lessly into data analysis workflows. For instance, Lin et al. [32]
utilized 3D reconstruction to parse match footage and analyze
badminton games on a virtual court, enhancing communication be-
tween coaches and players by providing actionable insights. A key
future scenario in sports data analysis involves supporting multi-
perspective, dynamic, and interactive forms of analysis that remain
closely tied to the content. Additionally, some videos reference
similar ones, such as professional athletes performing movements
comparable to those of the user. By extracting body motion data
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from multiple videos and visualizing it through multiple avatars,
analysts could gain richer and more detailed insights.

8.2 Interactive Experience with Virtual
Opponents - Motion Reaction

Engaging in training against reconstructed virtual players is an
innovative approach that allows athletes to familiarize themselves
with opponents’ signature moves and characteristics. For exam-
ple, it can simulate how to evade a block by an NBA player with
exceptional height and wingspan, to successfully complete a shot.

Our method visually simulates real-game scenarios to support
motion reaction, but the lack of physical feedback still limits the
sense of immersion. To address this, future work could explore
integrating external devices, such as haptic feedback systems [23],
to provide richer sensory experiences. Incorporating haptic feed-
back into immersive training or virtual confrontations has proven
effective for enhancing realism [29]. In addition, we found that
adopting motion generative models represents a highly promising
direction for enhancing system reactivity. Such models could enable
richer and more lifelike interactions by generating more realistic
opponent responses—such as staggering or falling when physical
contact occurs—and incorporating these into the virtual opponent’s
reactions. Introducing these advanced features will further enhance
the training value of virtual sports scenarios.

8.3 Design Implications

Throughout our study, we gathered vital design implications.

First, motion data should ideally be displayed both as an overview
and specifically linked to key body parts. In our first user experi-
ment (Sec. 7.1), both motion data panels received high ratings for
usability (over 6.7 points), outperforming other types of motion-
related visualizations. This finding suggests that for complex move-
ments (like an arm swing in shooting), visualization designs should
closely follow the direction of the movement to enhance comprehen-
sion. In addition, providing specific numerical data as an overview
to complement motion information could enhance perception and
understanding of human motions in an immersive environment.

Second, in motion training, feedback integrated directly into the
first-person view tends to be more effective than feedback presented
separately. Despite the positive reception of physical contact visu-
alizations in our second experiment, the DEF Result Panel received
only average feedback during interviews. Two participants particu-
larly noted its limited usefulness, as they typically focused on the
immediate attempt and made adjustments based on recent attempts
rather than overall performance. This indicates a preference for
feedback that is directly relevant to the current action, suggest-
ing that users are more engaged with immediate and actionable
feedback than with a broad overview of their performance.

Third, an end-to-end framework would be more effective in
minimizing the progressive accumulation of errors caused by mul-
tiple intermediate data processing steps. In the current pipeline
for sports scene reconstruction, multiple steps are involved. For
example, human motion and ball trajectories are processed in par-
allel and later aligned and adjusted during the final stage, which
inevitably introduces manual errors. To reduce such cumulative
errors, customized models tailored to specific scenarios can be more



From Sports Videos to Immersive Training: Augmenting Human Motion to Enrich Basketball Training Experience

effective. For instance, a model designed specifically for extracting
data from basketball shooting events could integrate human mo-
tion and ball states simultaneously from a physics-based simulation
perspective. This approach reduces intermediate steps, improving
both consistency and accuracy.

8.4 Generalizability

We discuss the generalizability of the framework’s inputs and out-
puts and explore ways to enhance it in future work.

Multi-modal Input: Although data extraction from monocular
video can handle the majority of sports videos, this framework
also supports the integration of more precise multi-modal data to
enhance reconstruction results. Possible multi-modal approaches in-
clude using point cloud data from volumetric videos to improve the
3D representation of sports courts, enhancing immersion; adapting
to incorporate assistive devices like position sensors during training
to further improve user experience; and leveraging millimeter-wave
radar for enhanced sports equipment status detection.

Broader Scenarios: The current immersive video training frame-
work supports two scenarios: motion demonstration for observation
or analysis, and motion reaction for interacting with a virtual player.
This adaptability extends to both analytical and simulated compet-
itive scenarios, highlighting the framework’s robust applicability
across various training contexts. In our future work, we envision
remote coaching as a novel scenario. Specifically, coaches could as-
sign various training tasks or even establish remote communication
to provide real-time instructions to the trainees.

MR Performance Requirements: The suitability of MR sys-
tems in sports training is highly dependent on the specific require-
ments of different sports or training tasks. For instance, sports like
table tennis require minimal system latency, while activities such
as soccer benefit from a wider field of view. Even within the same
sport, different drills may have varying requirements; for example,
defensive movement training can tolerate more latency than one-
touch shooting. Considering these variations, it is important for
future research to address task-specific performance requirements
when designing MR-based training systems.

Expanded Application: Our framework exhibits considerable
scalability, effectively accommodating a wide range of sports activ-
ities, whether they involve significant use of equipment or not. For
sports involving equipment, athletic performance is often reflected
in the data related to the equipment, such as trajectory, speed, and
rotational velocity. Our framework is already adaptable to various
ball sports, such as football shooting or volleyball spiking [23]. Ad-
ditionally, it supports the integration of different object detection
algorithms or tracking technologies to extract equipment data. For
certain racket sports, where ball status is also a key performance in-
dicator, our framework is compatible. For instance, using TrackNet
[25], we can capture badminton motion states and, after aligning
them with human movement, apply the framework to immersive
racket practice or even enhance shuttlecock state estimation to
support feedback on striking performance. Despite its broad utility,
it is important to acknowledge the specific challenges encountered
in accurately reconstructing ball trajectories. These challenges sug-
gest that adversarial sports, such as boxing—which emphasize the
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movement and interaction between athletes—may represent a more
suitable and precise application domain for our framework.

8.5 Limitations

The limitations of our work fall into three main areas. First, there
is a lack of detail in the motion reconstruction, particularly
in the capture of hand movements. This was demonstrated in
our Module Usability Study 1, where participants acknowledged
the overall accuracy of the reconstructed scene, but pointed out
shortcomings in the representation of fingers. This suggests our
framework may face challenges in sports that emphasize fine hand
movements, highlighting the need for improved motion capture
techniques to achieve higher fidelity. Second, current MR head-
sets present issues such as spatial distortion and physical
discomfort, which can affect athletic performance, especially
for high-level users. For example, one highly experienced partici-
pant (P12) reported discrepancies between the virtual and actual
positions of the basketball, with perceived distance varying dur-
ing head movement, which could impact performance. The weight
and fit of MR headsets can also be a burden during sports training.
The significant decline in shooting performance among high-level
participants after wearing the HMD in System User Study 3 pro-
vides further evidence for this limitation. While current HMDs may
constrain physical performance, MR offers distinct advantages for
situational awareness and visual decision-making—such as read-
ing fakes—which are critical in sports. This presents a trade-off
between immersive visual feedback and physical freedom. Future
improvements in HMD technology, including lighter design and
reduced latency or distortion, could help address these issues and
enhance the training experience. Third, our user study was lim-
ited in scale. Rather than aiming for a comprehensive evaluation,
our primary goal was to demonstrate the feasibility of using video-
based motion analysis and immersive interactions in sports training,
and to gather early but meaningful insights. Potential extensions
include collaboration with sports teams for longitudinal tracking
of physical metrics, enabling a more comprehensive evaluation of
training effectiveness.

9 Conclusion

In conclusion, our work leverages advanced 3D motion reconstruc-
tion to create immersive training experiences, enabling users to
engage with video sports scenes from a first-person perspective and
interact with virtual opponents. With expert input, we identified
key performance indicators and developed immersive visualizations
and a simulated one-on-one matchup. User studies validated our
approach, demonstrating its potential to enhance comprehension
and engagement in basketball shooting. In the future, we plan to
extend this framework to other sports, such as boxing and football.
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