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Abstract 
Temporal Action Localization (TAL) aims to detect the start and 
end timestamps of actions in a video. However, the training of TAL 
models requires a substantial amount of manually annotated data. 
Data programming is an efcient method to create training labels 
with a series of human-defned labeling functions. However, its 
application in TAL faces difculties of defning complex actions 
in the context of temporal video frames. In this paper, we propose 
ProTAL, a drag-and-link video programming framework for TAL. 
ProTAL enables users to defne key events by dragging nodes 
representing body parts and objects and linking them to constrain 
the relations (direction, distance, etc.). These defnitions are used 
to generate action labels for large-scale unlabelled videos. A semi-
supervised method is then employed to train TAL models with such 
labels. We demonstrate the efectiveness of ProTAL through a usage 
scenario and a user study, providing insights into designing video 
programming framework. 
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1 Introduction 
Temporal Action Localization (TAL) is an important task within 
the feld of computer vision, particularly for understanding and 
indexing long videos [5, 12, 71, 74, 77, 78]. TAL aims to detect the 
start and end timestamps of specifc actions and their categories [60]. 
In real-world scenarios, most videos are untrimmed, and the actions 
of interest may only appear in a small portion of frames. Therefore, 
compared to video-level action classifcation [4, 62], TAL faces the 
challenge of temporally localizing actions while ignoring irrelevant 
frames and distracting backgrounds. 

With the rapid development of computer vision techniques, deep 
learning-based methods [33, 52, 74] have achieved commendable 
results on various TAL benchmarks, such as ActivityNet-1.3 [14] 
and THUMOS14 [25]. However, training deep neural networks for 
TAL often requires a large amount of annotation data on specifc 
videos, the acquisition of which incurs signifcant labor costs. While 
single-frame supervision [37, 69] and semi-supervision [39] settings 
have been introduced to train TAL models with fewer annotations, 
these methods still involve a tedious annotation process, annotators 
are required to label each sample individually and cross-validate 
the results, which remains time-consuming and labor-intensive. 

As a key approach in data-centric AI [73], data programming [46, 
48] injects human knowledge into data to generate labels for model 
training. Although these labels can be noisy, they are crucial for 
the initial training of deep learning models. Data programming 
typically involves two stages: decomposition and reconstruction. 
During decomposition, experts use pretrained models to generate 
initial labels. In reconstruction, they defne labeling functions to 
create new labels based on these initial ones. For example, in im-
age semantic segmentation, experts might use a pretrained model 
to identify segments like “transportation” and “water” in a new 
dataset. They can then defne relations between segments, such as 
transportation above water, to extract the label “boat” for model 
training [22]. 

Despite its success in natural language and image processing, 
applying data programming to TAL presents signifcant challenges. 
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First, decomposing actions into meaningful substructures is dif-
fcult because actions in videos are spatiotemporal data, adding 
complexity. For example, baseball throwing involves fner actions 
like hip turning and hand movement, but pretrained models of-
ten lack the accuracy to localize these atomic actions. Second, the 
spatiotemporal nature of actions makes it challenging to defne 
labeling functions that capture detailed action dynamics. Human 
actions involve complex relationships between human poses and 
objects across frames, requiring an efective method to translate 
conceptual actions from users’ minds into accurate labels. 

To address the frst challenge, we propose ProTAL, a TAL data 
programming framework with multiple levels of action decompo-
sition. The framework frst breaks down actions into key events, 
which are then defned by fne-grained visual elements extracted by 
computer vision modules that recognize human poses and objects 
frame by frame. The design is inspired by the observation that hu-
mans can identify ongoing actions from just a few frames, thanks 
to discriminative cues within the action, which we refer to as key 
events. 

To address the second challenge, we propose a drag-and-link 
interaction design that enables users to defne key events efciently 
using a graph-based visualization. Human poses and objects are 
mapped to nodes on a canvas, where users can drag, link, and 
constrain angles between key nodes to specify relations and defne 
key events. The design also supports smooth visual transitions from 
real video frames to key nodes, allowing for intuitive abstraction 
and defnition of key events. 

We developed a system to implement the proposed framework 
and drag-and-link interaction. After uploading a video dataset, the 
computer vision modules will extract human poses and objects 
automatically. Then, users can select the videos of interest to defne 
key events. The human poses and objects of each frame are repre-
sented as nodes and links, which are interactive and editable. Users 
can select specifc frames as key events and complete the defnition 
with drag-and-link interaction. The key events defned are applied 
to the rest of the videos, generating frame-wise action labels for the 
dataset. The labels are used to train TAL models, and the models 
are then applied to the dataset, which accelerates the whole process 
of data annotation. ProTAL also visualizes the distribution of key 
events across the dataset and helps further fne-tune the annotation. 
With several iterations, ProTAL helps users create an initial dataset 
for model training. The efectiveness of our framework and inter-
action design was demonstrated in a practical usage scenario and a 
user study. The main contributions of this paper are as follows: 

• We propose ProTAL, a video programming framework that de-
composes complex human actions into key events and atomic 
elements for fexible data programming. 

• We design an intuitive drag-and-link interaction that quickly 
translates user concepts into data programming rules. 

• We implement a system of ProTAL that facilitates TAL annotation 
and training, demonstrating the efectiveness of our framework 
and interaction design. 

• We gain insights into interactive video programming and ofer 
lessons for designing TAL annotation systems through controlled 
user studies with ProTAL. 

2 Related Work 
We review previous works on TAL, interactive annotation of video 
data, and data programming. 

2.1 Temporal Action Localization 
Under the wave of the deep learning era, the feld of TAL has 
undergone revolutionary development. Leveraging the robust video 
backbones such as C3D [58], I3D [4], and VideoMAE [57], the 
technology for TAL has made signifcant strides. Currently, TAL 
primarily operates under two settings: full supervision and weak 
supervision. 

Fully-supervised TAL is the most fundamental setting, utilizing 
the most labeled information for model training. The earliest work 
can be traced back to the detection of actions by classifying sliding 
window proposals [54]. Subsequently, the anchor mechanism was 
introduced to enhance the fexibility of proposal regions [17]. With 
the introduction of TAL-Net [5], the workfow of TAL was further 
refned, evolving the anchor mechanism into a two-stage approach. 
Similarly, ActionFormer [74] and TriDet [53] have enhanced TAL 
performance. For weakly-supervised TAL, UntrimmedNet [61] is 
an pioneering work, consisting of a classifcation module and a se-
lection module to infer the temporal boundaries of action instances. 
STPN [40] introduced sparse regularization for video-level classif-
cation. Nguyen et al. [41] and Liu et al. [34] made efective use of 
background segments to enhance the accuracy. Other settings like 
single-frame supervision [29, 37, 69] have been proposed to reduce 
annotation costs. This setting lies between fully supervised and 
weakly supervised, as start and end timestamps are not required for 
training. Instead, the model can be trained with just one annotated 
frame per action segment [37] or background segment [69]. 

Regardless of the type of supervision, state-of-the-art TAL meth-
ods have achieved impressive performance across various bench-
marks. However, a signifcant gap persists between these methods 
and practical applications. These models often face the problem of 
“data hunger”. Training a TAL model typically requires a large-scale 
annotated dataset, and obtaining these annotations requires con-
siderable costs. While weakly supervised and single-frame super-
vised methods can partially mitigate this challenge, the annotation 
process still requires manually reviewing each video, making it 
time-consuming and ultimately not scalable. 

2.2 Interactive Annotation of Video Data 
With the increasing demand for automatic video analysis and un-
derstanding in industries such as manufacturing, education, and 
sports, the high cost of video annotation has become a key barrier 
to applying these models. To address this challenge, researchers in 
the felds of human-computer interaction have proposed various 
interactive video annotation frameworks. Using rules or machine 
learning algorithms, these frameworks signifcantly reduce work-
load, ofering an efective solution. 

Kurzhals et al. [28] utilized video segmentation algorithms to 
divide eye-tracking data into multiple segments and then cluster 
them, enabling users to annotate multiple segments simultaneously. 
HistoryTracker [42] employed historical data and algorithms to hot-
start the annotation system, allowing baseball tracking data to be 
generated with minimal user input. According to the needs of racket 
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sports analysts, EventAnchor [10] proposed a multi-level video 
annotation framework that integrates computer vision algorithms 
and extensive domain knowledge, facilitating efcient exploration 
of video content. VideoModerator [56] is a system developed to 
annotate anomalous videos, which frst recommends videos through 
a classifer and then provides users with three diferent views to 
analyze and annotate these recommendations. ActLocalizer [6], 
tailored for TAL tasks, helps users expand single-frame annotations 
to full supervision by aligning action instances with a storyline-
based view, thus improving the accuracy of TAL. 

However, despite the signifcant improvements these frame-
works have made in enhancing annotation efciency, they still 
face challenges when applied to TAL. Firstly, although these frame-
works ofer well-designed user interfaces to help users understand 
and explore data, they are often tailored to specifc tasks or scenar-
ios. Moreover, even with these frameworks, each video still requires 
handling for annotation or validation, limiting scalability. It means 
that constructing large-scale datasets still requires substantial time 
and labor. Secondly, while ActLocalizer [6] presents a method that 
allows users to enhance supervision in datasets with single-frame 
annotations, it is still not suitable for scenarios where the dataset 
needs to be built from scratch. 

2.3 Data Programming 
Data programming ofers a scalable paradigm that allows users to 
quickly build large datasets from scratch for model training. As one 
of the most promising approaches within data-centric AI, data pro-
gramming injects knowledge into data in the form of user-defned 
labeling functions, enabling the generation of annotated data more 
efciently than manually labeling each sample individually. Data 
programming was frst explored in the feld of natural language 
processing [2, 47, 59]. Snorkel [46] enables users to provide higher-
level supervision in the form of labeling functions. This approach 
allows for the creation of large-scale datasets without the need to 
meticulously manage the resulting noise and conficts. Ruler [13] 
and TagRuler [8] enable users to efciently obtain accurate labeled 
data to generate labeling functions using predefned concepts and 
highlighting keywords, simplifying the design of labeling functions. 

Researchers have been working to expand the application sce-
narios of data programming. However, there are still relatively few 
applications in computer vision. Visual Concept Programming [22] 
was the frst to extend data programming to image data. This ap-
proach begins by training a self-supervised model to extract visual 
concepts and then ofers an interactive interface that allows users 
to create labeling functions without writing code, enabling itera-
tive model training. It lacks the ability to defne dynamic concepts, 
making it unsuitable for video data. Additionally, VideoPro [21] 
applies data programming to video data through sequence pattern 
mining, but fails to provide temporal annotations for actions, lim-
iting its utility in TAL. To address these limitations, we propose a 
novel framework that extends data programming to TAL, aiming 
to bridge the gap between TAL methods and practical applications. 

3 Problem Formulation 
We frst introduce the concepts of data programming and how we 
formulate the problem of data programming in the TAL scenario. 

Data Programming Paradigm. To begin, we introduce the 
paradigm of data programming, which usually consists of two 
stages. The frst stage involves the automatic extraction of visual 
elements. Advanced computer vision algorithms are used to extract 
visual elements that may serve as candidates for the defnition of 
new labels. The second stage focuses on defning the rules that 
can be used to compose the candidates together and generate new 
labels. 

The key to efective data programming in TAL is to extract basic 
action elements and reconstruct them. In this study, we frst decom-
pose actions into key events inspired by the concept of “key frames” 
in video editing, which defne the start and end points of transitions 
or animations. While key points can anchor human actions, we 
use the term “key events” instead of “key frames” because a key 
event can span several frames. This fexibility accounts for slight 
variations in the same action across diferent videos, where a single 
key frame would be too restrictive. Key events are considered the 
bridge between the target actions and basic visual elements. 

Key Event. A key event is an atomic event within an action 
characterized by changes in the relations between several visual 
elements, which is easier to decompose and defne. For example, 
the “clean and jerk” action includes a key event �0 (Figure 2E): “The 
barbell moves from below the athlete’s head (Figure 2E1) to above 
the athlete’s head (Figure 2E2).” 

Key events serve as anchor points for the actions, but another 
unresolved problem is how to defne and refne the key events 
using low-level visual elements. Taking the case in Figure 2 as 
an example, �0 involves two visual elements: the “barbell” and 
the “person’s head,” with �0 being defned by the relative position 
change between these two visual elements. However, to leverage 
these visual elements to defne key events, two key questions remain 
to be addressed: 

Q1 What visual elements should be extracted for the defnition 
of key events? 

Q2 What constraints are required to defne a key event with 
visual elements? 

4 Design Considerations of ProTAL 
To prepare for the design of ProTAL, we conducted a literature 
review and a workshop study1 to identify the space for visual 
elements and constraints. 

4.1 Literature Review 
Since a key event is a temporal and spatial substructure of an action, 
understanding the visual elements involved in key events requires 
frst identifying the visual elements associated with actions. To 
explore this, we conducted a literature review to gain insights 
from previous research on human action recognition and detection. 
We reviewed 23 studies [1, 3, 9, 11, 15, 16, 18, 19, 26, 27, 31, 43– 
45, 55, 63, 65, 68, 70, 72, 76, 79, 81] and identifed two main cate-
gories of action-related visual elements. Based on the interactions 
involved in the actions, actions can be categorized into three cate-
gories: (1) single-human actions, (2) human-human interac-
tion, and (3) human-object interaction, and focusing on these 

1The study has been approved by State Key Lab of CAD&CG, Zhejiang University. 
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Figure 1: The space of visual elements and constraints in key event defnitions. Visual elements include two categories: 
human-related visual elements, mainly human body parts, usually represented as skeletons; and object-related visual elements, 
including objects involved in the action. Constraints include direction, relative distance, contact, and association constraint. 

categories, many studies have tried to improve the action detection 
or recognition performance. It is worth noting that object-object 
interactions could be considered a separate category, but they are be-
yond the scope of this discussion. In practice, objects can be highly 
complex. For instance, a modern car can be broken down into com-
ponents like pistons, crankshafts, and valves, each operating with 
a distinct mechanism of motion. Providing a formal defnition that 
encompasses all types of objects is inherently challenging. Addi-
tionally, a human pose can be viewed as a simplifed representation 
of a machine. If the target object is clearly defned, the proposed 
method for modeling human-human interactions could be adapted 
and extended to handle such scenarios. Therefore, we focus on the 
discussion on single-human actions, human-human interaction, 
and human-object interaction. In these categories, the interaction 
subjects considered are actually humans and objects. Therefore, we 
can start from these two interaction subjects and consider the visual 
elements related to the action: human-related visual elements and 
object-related visual elements. 

Human-related Visual Elements. Human-related visual ele-
ments are central to actions, as the human body plays a leading role 
in action involving multiple body parts. Among the 23 studies, 19 
utilize pre-recognized human bodies as input, with 10 in the form 
of poses and 9 in the form of bounding boxes. Therefore, when con-
sidering human-related visual elements, it is essential to account 
for the various parts of the human body. 

Object-related Visual Elements. In the context of human-
object interaction, out of 21 studies that addressed this area, 11 
utilized bounding boxes of relevant objects as input, in addition to 
learning representations directly from RGB. Thus, for object-related 
visual elements, we need to focus on objects that are relevant to 
the action being performed. 

4.2 Workshop Study 
Through our literature review, we identifed the potential types of 
visual elements involved in key events and answered Q1. The next 
step is to determine the types of relations between them should 
serve as constraints in key event defnitions. As the concept of a key 

event is newly introduced in this paper, it may not be appropriate 
to apply element relations considered in existing action-related 
works. 

A key event is characterized by changes in the relations between 
several visual elements, which can be represented as a series of 
state transitions. As illustrated in Figure 2, states 1 and state 2 
correspond to two distinct states within the key event �0, allowing 
�0 to be expressed as �0 B �����1 → �����2. It is apparent that 
each state, such as states 1 and 2, can be represented by a frame 
in the action, indicating that a key event is, in fact, a dynamic 
concept composed of a sequence of static states. Therefore, when 
defning a key event, we are essentially defning a series of static 
states. Therefore, the relations between the visual elements in these 
states are also static. This strategic decomposition of key events 
signifcantly simplifes their retrieval, as it only requires identifying 
static frames that match the specifed rules. 

The nature of key events guides us in further exploring the 
constraint space. Following this, we conducted a workshop study 
with a brainstorming session and a follow-up seminar to derive the 
space of the constraint in detail. 

Participants. We conducted the workshop with 8 action annota-
tors (E1-E8) who have participated in action annotation more than 
5 times and have backgrounds in programming and AI. Among 
them, E2 and E7 (both male) are Ph.D. in computer science, while 
the others are graduate students (4 in computer science and 2 in 
sports science, male=4, female=2). All participants have experience 
in action annotation for racket sports (e.g., tennis, table tennis, bad-
minton), 75% have experience with other ball sports (e.g., basketball, 
football, volleyball), and 50% have annotation experience with other 
types of actions. 

Procedure. We began by assessing the participants’ backgrounds 
and understanding the types of action they had previously anno-
tated. Next, we introduced the concept of key events and the visual 
element space derived from our earlier research. After ensuring that 
the participants had a good understanding of the relevant concepts, 
we organized a brainstorming session in which each participant was 
shown three videos: one containing jumping jacks (single human 
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action), one containing handshake (human-human interaction), and 
another containing clean and jerk (human-object interaction). Each 
video contains more than 10 action instances. These actions involve 
multiple types of relations, including those between human-related 
elements, object-related elements, and between human-related and 
object-related elements, efectively covering all possible pairings of 
element types. These actions are also common to minimize poten-
tial bias due to varying levels of familiarity and to facilitate broader 
discussions. Participants were asked to propose a key event for each 
action and, assuming they had access to the bounding boxes of all 
action-related visual elements in the frames, provide a pseudocode 
(or a natural language description) that could be used to retrieve the 
frames corresponding to the key event, each video for 20 minutes. 
Following this, we held a seminar where participants summarized 
the 24 pieces of pseudocode and identifed the type of constraints 
needed to defne key events. 

Findings and Discussions. All participants highlighted the 
importance of relative position between visual elements. Given 
that each frame naturally provides the bounding box position of vi-
sual elements, relative position becomes a key consideration when 
defning relations between them. Also, relative position is a very 
intuitive relation for a pair of visual elements. To express the rel-
ative position, such as “above,” “to the left,” “upper right,” “upper 
left,” etc., 83% of the pseudocode examples calculated the direction 
angle, while 58% involved directly comparing �-coordinates or �-
coordinates. During the seminar, it was agreed that while direct 
coordinate comparison might be feasible for simpler direction rela-
tions such as “above” and “below”, calculating the direction angle 
ofers broader coverage and greater accuracy. 

In addition to direction, participants also mentioned distance 
as a crucial aspect of relative position. E1 and E4 noted that using 
absolute pixel distance is impractical, as variations in camera shoot-
ing distance and changes in viewing angle can cause this value to 
fuctuate, so they opted for relative distance, comparing the magni-
tude of the distances between pairs of visual elements. Participants 
noted that direction and relative distance together were sufcient 
to describe a relative position. Furthermore, these relations can be 
applied between any type of visual element. 

Beyond relative position, it was observed that in the pseudocode 
for the second action, all participants utilized the intersection of 
the bounding boxes of two individuals’ hands. Participants agreed 
that contact is a required constraint, and the overlapping of regions 
can capture this relation better than distance because objects vary 
in size and shape. Furthermore, E2 proposed that the association 
constraint, which defnes the relationship between body parts and 
their respective individuals, is essential. This association can be de-
rived from the extracted human poses. All participants agreed that 
in scenarios involving multiple individuals, accurately associating 
body parts with the correct individuals is critical for identifying 
and defning key events. 

4.3 Design Principle 
Our goal is to design a TAL data programming framework that 
allows users to defne key events through interaction and use these 
rule-based defnitions to generate labels for unlabeled video sets 
to train the TAL model. Based on the previous research, we now 

have a clear understanding of the space of visual elements and 
constraints, shown as Figure 1. 

Visual elements. There are two categories of visual elements to 
consider: human-related visual elements and object-related visual 
elements, where the human-related visual elements involve various 
body parts. Therefore, when implementing the system, it is essential 
to provide: 

P1 Automatic extraction of visual elements in frames, including 
human body parts and action-related objects. 

P2 Supporting direct manipulation [23] of the visual elements 
on the user interface. 

P3 Providing intuitive visual mapping of visual elements from 
video frames to canvas. 

Constraints. For constraints, it is necessary to provide the rel-
ative position relations, including direction (angle) and relative 
distance. In addition, contact relations, which indicate whether two 
visual elements are in contact, and the association constraint, which 
constrain the person to whom a human-related visual element be-
longs, should also be provided. Therefore, the design principles for 
constraints include: 

P4 Providing sufcient constraint candidates, including direc-
tion, relative distance, contact, and association constraint. 

P5 Supporting interactive setting of constraints to defne key 
events, with visualization of constraints on the user interface. 

P6 Enabling users to get feedback on the generated labels and 
iteratively fne-tune the constraints they set. 

5 Framework of ProTAL 
We propose ProTAL, a data programming framework designed for 
TAL. Built on the data programming paradigm, ProTAL incorporates 
the unique characteristics of temporal action data in TAL. The 
framework allows users to efciently generate training labels for 
unlabeled videos through interaction. As shown in Figure 2, ProTAL 
follows a three-stage pipeline, which is described in detail below. 

5.1 Extraction of Action-Related Visual Element 
For unlabeled video data, the frst stage of ProTAL involves extract-
ing action-related visual elements from each frame. These visual 
elements are then used to flter frames that contain a specifc set 
of elements that meet defned constraints. According to P1, visual 
elements extracted are categorized into two groups: human-related 
elements and object-related elements. Using advanced computer 
vision models, both categories can be extracted automatically and 
efciently. 

For human-related elements, it is necessary to extract various 
body parts of the human and to distinguish which person these 
elements belong to (P4). Existing human pose estimation meth-
ods, such as ViTPose [66] and RTMPose [24], can be employed to 
obtain skeleton information from each frame, thereby capturing 
the location of diferent body parts for each person in the frame. 
For object-related elements, state-of-the-art object detection and 
semantic segmentation models are highly efective in detecting or 
segmenting specifc objects in videos, thus providing the necessary 
location information (P4). In addition to these models, recent ad-
vances in multimodal models, such as Grounding DINO [32] and 
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Figure 2: Framework of ProTAL. The frst stage is (A) the automatic extraction of action-relevant visual elements. The second 
stage is (B) the defning of key events based on interactions, followed by (C) the generation of key event labels. The third stage 
is (D) the model training with a semi-supervised TAL method based on the generated labels. 

Grounded SAM [49], combine the strengths of various types of 
models to enable more robust detection and segmentation of com-
plex visual elements using natural language prompts. These models 
are also useful for extracting object-related elements from videos. 
ProTAL’s design allows fexibly integrating computer vision mod-
els that best suit users’ needs. For instance, users can integrate a 
detection model that is purposely trained for tennis balls to extract 
their positions more precisely compared to using general vision 
large models, such as Grounding DINO. 

At this stage, ProTAL has extracted action-related visual ele-
ments from the initial unlabeled video set. For any given frame � 
in any video � within the video set, the visual elements extracted 
from � are denoted as ���� : 

���� = {�1, �2, · · · �� }, (1) 
�� B {����, ��������, �����������(human-related) 

, · · · }, � ∈ {1, · · · , �}, (2) 

where each � represents a visual element, which includes attributes 
such as location and category. 

5.2 Key Event Defnition and Label Generation 
After the automatic extraction of visual elements, the second stage 
involves defning key events through an interactive interface. These 
key event defnitions serve as rules for identifying frames that 
correspond to the key events and assigning labels to them. The 
labels are then presented to the users, enabling them to refne the 
key event defnitions to improve label quality. 

5.2.1 The Concept of Key Event. In order to defne a key event, 
denoted by � , users are required to specify �� , the number of states 
that comprise � : 

� B �����1 → �����2 → · · · → ������� , (3) 

and the threshold �ℎ� of time interval between adjacent states: 

� ≤�ℎ��,�+1 
�����  −−−−−−−−−→�  ������+1 . (4) 

For each state, users are required to provide a detailed defnition. 
In order to defne ������ , users are required to specify the visual 
elements involved, the attributes of each of these elements, and the 
relations between them: 

������ B {���, ���}, (5) 
��� = {�′ 1 , �

′ ′ 
2 · · · } ,  , �� , 

� 
(6) 

� ′ B { ����, �����������(human-related)�

, · · · }, � ∈ {1, · · · , �� }, (7) 
��� = ′ {� , · · · }, �, � ∈ { ·  , � 1, · · , �� � }, (8) 
′ � B {� · }  ����1,�����2, · · , �, � ∈ {  , � 1, · · · , �� � }, (9) 

where � ′ denotes the element � involved in the state defnition, ���  
denotes the number of such elements, and � ′ denotes the 

�, � user
defned relation between element � and element � . The set of val-
ues {� ����1,� ����2, . . . } corresponds to the specifc parameters or 
attributes for the corresponding type of relation. 

5.2.2 The Retrieval of Key Event Frames. When users complete the 
defnition of a key event, the frames in the videos that match the 
user-defned key event defnition will be retrieved and assigned 
labels. Specifcally, in each state within the key event, the visual ele-
ments and the constraints together serve as the rules for searching 
through each frame in the video to identify those that align with 
the state’s defnition. After retrieving the frames corresponding to 
each state, the sequence of frames that meet the conditions based 
on the user-defned time interval threshold �ℎ� between the states 
represents the frames of the key event. Thus, retrieving key event 
frames in the video primarily involves retrieving frames that satisfy 
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the defnitions of each state within the key event. First, we represent 
frames in the video abstractly. Given all visual elements ���� ex-
tracted from a frame � and all computable relations between them 
���� = {��, � , · · · }, � can be structurally represented as a graph, 
denoted as � � B {���� , ���� }, since each visual element can be 
treated as a node with attributes and each relation between a pair 
of nodes can be considered as an edge with weights. This structure 
aligns with the state defnition ������� B {���, ���}. 

Given the state defnition ������ , as ���� may contain redun-
dant visual elements, determining whether � is a frame correspond-
ing to ������ requires checking if ������� is a subgraph of � � . This 
means that determining whether a frame satisfes the state defni-
tion is essentially a subgraph matching problem with edge weights. 

Since state defnitions are generally not overly complex and the 
number of nodes in the subgraph is typically small, a search algo-
rithm with pruning, denoted as Φ, can be employed for subgraph 
querying: 

�
���� � corresponds to ������ , 

Φ(� � , ������� ) = (10)
����� otherwise. 

When Φ(� � ,������� ) = True, the frame � corresponds to ������ ; 
otherwise, it does not. After labeling all frames corresponding to 
each key event, the results are presented to the users, guiding them 
to refne the key event defnitions in order to generate more accurate 
labels for TAL training. 

5.3 TAL Model Training 
After completing the frst two stages, the original video dataset 
now contains sparse frame-wise action labels. The objective of this 
stage is to utilize these frame labels to train the TAL model. 

5.3.1 Problem Statement. Given a video � with � frames, with an 
action instance in � from [�� : �� ], where 0 ≤ �� ≤ �� ≤ � . Since 
the key event is a substructure of the action, the frames labeled 
by states of a key event lie within the action. The generated labels 
for the action instance consist of several frames between �� and 
�� , denoted as ��������� �� = {�1, �2, · · · , �� } ⊆ {�� , · · · , �� }, with 
each labeled frame implicitly assigned an additional state label. 
This difers from full supervision labels, ������ ��� = {�� , · · · , �� }, 
which include all frames within the action instance, and from the 

′single-frame supervision labels used in SF-Net, ������� = {� ′}, � ∈ 
{�� , · · · , �� }, where only one frame within the action instance is 
labeled. Furthermore, in both full supervision and single-frame 
supervision, every action instance is assigned labels. For ProTAL, 
however, there may be instances that remain unlabeled. 

5.3.2 Training Method. ProTAL employs a semi-supervised ap-
proach by extending SF-Net to train with ��������� �� . SF-Net can 
be trained with any number of frame labels, but cannot fully lever-
age unlabeled samples for representation learning. To address this, 
we refne the classifcation target of the classifcation head to the 
state level. Given that the states within key events are inherently 
ordered, a state order loss on unlabeled videos is introduced during 
training to penalize any incorrect prediction of state order. 

6 Interface Walkthrough: A Practical Scenario 
Based on the proposed ProTAL framework in section 5, a proto-
type system with a drag-and-link interactive user interface was 
implemented, as shown in Figure 3. In this section, we present a 
practical usage scenario where the system is used to program an un-
labeled table tennis video dataset for TAL training. We demonstrate 
how the user interact with the system throughout the process and 
evaluate the fnal TAL model. 

Background. Alex is a data analyst with extensive experience in 
annotating table tennis action data. He has participated in the anno-
tation of a number of table tennis-related datasets and is profcient 
in the use of AI methods to identify objects such as balls, players, 
tables, and actions in video. The current method for segmenting ral-
lies in table tennis match videos relies on identifying score changes 
on the scoreboard. However, this approach is sometimes inaccurate 
due to the delays in score adjustment during broadcast. To address 
this issue, Alex aims to train a TAL model that can temporally lo-
cate table tennis serve actions, with the objective of refning rally 
segmentation by detecting the time intervals of serve actions. 

Implementation Details. The prototype system uses several 
computer vision modules to extract visual elements. For human-
related elements, RTMPose [24] is integrated to extract human 
poses from videos. For object-related elements, such as the ball and 
the table, an of-the-shelf detection model trained specifcally for 
table tennis analysis tasks is utilized. According to Equation 2, the 
extracted attributes of visual elements include position, type, and 
association (derived from human poses). To track individuals and 
objects across diferent states of a key event instance, we use the 
Intersection over Union (IoU) of bounding boxes of adjacent frames, 
given the short time span. This ensures that when matching sub-
graphs, individuals with the same ID in each ������ correspond to 
the same person in the video. For relative distance, during subgraph 
matching, we ensure that the length order of each corresponding 
edge pair remains consistent with the defnition. For the contact 
constraint, two bounding boxes are considered to be in contact if 
their IoU exceeds a predefned threshold. 

6.1 User Interface Overview 
Functionality. The user interface includes fve views. Dataset View 
supports video browsing and label review. Event View allows key 
event management. Defning View displays a canvas for defning 
key events. Frame View lists the frames retrieved based on the 
user-defned key events. Training View displays the status of model 
training. 

Interaction. The drag-and-link interaction design is inspired 
by motion editing techniques in animation. In animation editing, 
keyframes are often manipulated by dragging human joint points 
to create or adjust motion sequences, as demonstrated in systems 
like TimeTunnel [80] and the pin-and-drag interface [67]. Addi-
tionally, ProTAL abstracts each state within a key event as a graph, 
making drag-and-link interactions a natural ft for defning states. 
Dragging provides an intuitive way to adjust nodes [64] or sub-
graphs [50] within the graph, while link is an inherent component 
of the graph [20, 30, 38], efectively representing the relations be-
tween nodes. This design ensures that defning relations between 
nodes through linking is intuitive. 
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Figure 3: System screenshot. Users can navigate the video dataset and identify key events in Dataset View (A). They can add key 
events in Event View (B) and defne them through drag-and-link interactions in Defning View (C). The distribution of generated 
labels and the labeled frames can be reviewed in Dataset View and Frame View (D) to guide the refnement of defnitions. 
Training View (E) shows the progress of TAL model training based on the generated labels. 

6.2 Data Programming on Table Tennis Videos 
6.2.1 Dataset Browsing and Frame Marking. Alex started with a 
dataset of 470 unlabeled table tennis video clips. The system frst 
completed the extraction of the visual element information. 

Video Browsing. Alex began by using the Dataset View (Fig-
ure 4) to get an overview of the videos. The Dataset View presents a 
cell matrix (Figure 4A), where each cell represents a video. By click-
ing on a cell, the video display module (Figure 4B) below displays 
the corresponding video. The timeline module (Figure 4C) includes 
a draggable progress bar to control the playback of the video and 
two parallel auxiliary timelines. Alex clicked on several videos to 
get a general sense of the dataset. 

Drawing from his experience in table tennis data annotation, 
Alex believes that the serving action is distinct from other strokes 
because it “involves a ball-throwing event.” Therefore, he considered 
using this ball-throwing event as the blueprint for the key event 
defnition. He pointed out that this key event could be break down 
into two states, “when the ball is on top of the hand” and “when the 
ball is thrown into the air.” To indicate that the ball is thrown, “we 
could use a change in the relative direction of the ball and the player’s 
head.” 

Key frame Marking. Using the frame marking functionality 
within the Dataset View, Alex marked two frames by clicking the 
button, and two markers were displayed on the timeline, as shown 

in Figure 4C1. These two frames represent the “ball held by hand” 
and “ball thrown into the air,” respectively, which correspond to the 
two states for later reference. At this point, he noticed that in the 
table tennis broadcast videos, the visual features difer signifcantly 
when the serve player is oriented to the camera versus away from 
it. Alex proposed that two key events be defned, and he decided 
to “frst defne the one for the serve action of players oriented to the 
camera.” 

6.2.2 Defining of Key Event. With the concept in mind, Alex pro-
ceeded with the defning. For convenience, we will refer to this key 
event as �1 below. 

Creation of Key Events and States. Alex initially created a 
new key event and initiated the editing process within the Defning 
View. Subsequently, within the Defning View, a timeline component 
(Figure 5A) was utilized for the purpose of managing the state of 
key events. Each node on the timeline represents a discrete state 
(Figure 5A1). Alex created two blank states, following Equation 3, 
and started editing the initial one. 

Visual Element Manipulation. The visual elements involved 
in the state should be set according to Equation 6 and Equation 7. 
The Defning View supports two methods for visual element adding. 
The frst method is by category, where users can select and add 
one visual element at a time to the canvas. The second method is 
through a hot start, allowing users to select a frame from any video 
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Figure 4: The Dataset View contains: (A) a cell matrix, where 
each cell represents a video, (B) a video display module, and 
(C) a timeline module containing two timelines, the top one 
(C2) showing the label distribution and the bottom one (C1) 
showing the user’s markers. 

and import all the extracted visual elements to the canvas based on 
their positions in the frame. Additionally, the selected frame can 
be set as the background of the canvas for reference. Each visual 
element, including objects and body parts, is represented as a node 
on the canvas, with the human skeleton also displayed (P3). 

Alex remarked, “Adding elements needed one by one is tedious. I’ve 
already marked some frames, so it’ll be quicker to use those for a hot 
start.” He then used the second method to add visual elements, lo-
cating the previously marked frame where “the player holds the ball 
and prepares to throw it up,” and imported both the visual elements 
and the frame into the canvas. Alex then removed unnecessary 
elements, such as spectators. Since the nodes representing the hand 
and the ball were too close together, making them overlapping and 
difcult to select and link, Alex dragged the two nodes to adjust 
their position to separate them (P2, Figure 5B). It is noteworthy that 
the absolute position of visual elements is not a constraint and will 
not be considered in the fnal rules that generate training labels. 

Constraint Setting. Alex then began setting the constraints 
between visual elements (P5, Equation 8, Equation 9). For state 1 of 
�1, Alex explained, “To capture the state where the ball is still in the 
hand and hasn’t been thrown, there are two key relations: the contact 
between the ball and the hand and the direction of the ball relative to 
the head.” He set the contact relation by clicking to link the ball and 
the hand (E5), with the relation visualized on the canvas (Figure 5E). 
For the direction relation, Alex created a valid direction range on 

the head node, visualized as a thick arc with the node at its center, 
and the arc’s central angle representing the specifed range. By 
dragging the arc, he adjusted its orientation (Figure 5C) and linked 
it with the ball node (Figure 5D), thereby establishing a direction 
constraint within a 70-degree interval toward the lower left (E5). 
Next, Alex established the direction relation between each player 
and the table. “This relation is important,” he noted, “because in this 
key event, the player serving the ball should be positioned above the 
table, while the other player should be below it.” 

Alex then began defning state 2 of �1. “For state 2, I need to set the 
relation between the ball and the serve player’s head,” he explained. 
“At this point, the ball is thrown up, positioned above and to the left 
of the center of the head.” He confgured this in the Defning View. 

State Interval Setting. Referring to the previously marked 
frames, Alex set the time interval threshold (Equation 4) between 
the two states to 0.3 seconds on the timeline component (Fig-
ure 5A2). 

6.2.3 Iterative Key Event Definition Refinement. At this point, Alex 
felt that his defnition of �1 had “reached a temporary conclusion.” 
He decided to “check the quality of the labels frst.” After clicking 
the button, the system generated labels and displayed them in the 
Dataset View (P6). 

Label Review. In the cell matrix component, each video cell 
is color-coded based on the number of labels (Figure 4A1). When 
viewing a video, the auxiliary timeline above the progress bar dis-
plays dots indicating the distribution of labels (Figure 4C2). Alex 
began by selecting a few cells to review the labeled frames in the 
corresponding videos. Concurrently, he utilized the Frame View to 
observe the retrieved frames that were based on the rules of the 
current state in Defning View. Alex noticed that “most of the labels 
are correct, but there are some mislabeling and missing issues.” 

Iterative Modifcation. “I want to see why this frame wasn’t 
labeled,” Alex remarked. He replaced the background in the canvas 
with the frame that wasn’t retrieved and compared it with the 
previously defned relations on the canvas (Figure 5F). “Ah, the range 
of the direction angle I set was a bit too narrow.” He then adjusted 
the angle range to encompass the direction angles in several frames 
that should have met the conditions (P6, Figure 5G). Alex made 
several similar adjustments until he was “basically satisfed” with 
the results. “I should address the mislabeling issue now,” he said 
as he began reviewing frames that were incorrectly labeled. He 
discovered that some frames were mislabeled due to interference 
from other people in the video. In state 2, since only the direction of 
the ball relative to the head and the direction of the person relative 
to the table were constrained, those frames “meet the rules when 
matching the person nearby.” To flter out this issue, he added a pair 
of distance constraints. 

Alex made several more modifcations to improve the quality 
of the label. “That’s good enough,” he said, deciding to stop mak-
ing further adjustments. “Even though the labels aren’t completely 
accurate and some instances were still missed, from a data program-
ming perspective, this is within a reasonable range.” Similarly, Alex 
defned the key event, denoted as �2, which pertains to the serve 
action of the player oriented away from the camera. Ultimately, 
Alex completed the label generation in 26.6 minutes. 
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Figure 5: The Defning View contains: a timeline (A) for setting the number of states and time intervals, and a canvas featuring 
drag-and-link interactions. Users can drag to adjust node positions (B) and direction ranges (C), link nodes to defne constraints 
such as direction (D), distance, and contact (E). This design also facilitates the refnement of key event defnitions (F). 

6.2.4 Final Training of the TAL Model. Alex clicks the button in 
the Training View (Figure 3E) to initiate TAL model training using 
the labels generated by the most recent version of the two defned 
key events. 

Training Status. Alex observed the training process through 
the Training View, which illustrates the alterations in loss and mAP 
(calculated based on several labeled ground truths) as the number 
of training epochs increases. After the training converged, Alex 
acquired a TAL model for localizing serve actions and expressed 
satisfaction with the model performance. 

6.3 Evaluation of the Framework 
Comparative Study. We conducted a comparative study to evalu-
ate the efectiveness of ProTAL by comparing the performance of 
a model built using ProTAL with models trained using traditional 
annotation-training workfows. We manually annotated Alex’s 
videos for training (took a total of 15.7 hours to annotate) and an 
additional 130 videos for testing. First, a model was trained using SF-
Net with full supervision labels, followed by another model trained 
with SF-Net using single-frame supervision labels. For single-frame 
labels, we selected the central frame of each action instance. Then 
these two models were compared with the model Alex built using 
ProTAL. As shown in Table 1, Alex’s model signifcantly outper-
formed the single-frame supervised SF-Net in terms of average mAP 
and approached the performance of the model trained with full 
supervision. This outcome is impressive given that the labeling time 

was reduced by over 30 times. At IoU thresholds ranging from 0.3 to 
0.7, Alex’s model achieved higher mAP scores than the single-frame 
supervision model, showcasing its robustness in modeling action 
duration. These results demonstrate the efectiveness of ProTAL in 
constructing TAL models from unlabeled video dataset. 

Additionally, ProTAL can be applied to various types of actions. 
Figure 6 presents screenshots that demonstrate the use of ProTAL to 
defne key events for diferent actions, including single-human ac-
tions, human-human interactions, and human-object interactions. 

7 User Study 
The efectiveness of the framework in building TAL models from 
unlabeled video dataset was demonstrated in section 6. To further 
evaluate the design of the drag-and-link interactions, we conducted 
a comparative user study2. This study compared the drag-and-link 
interface of the prototype system with a baseline system that uses a 
form-based interface, which can be considered a version of ProTAL 
without the drag-and-link feature. It aimed to answer the following 
two research questions: 

• Can drag-and-link interactions reduce the time consumed in 
defning key events (improve the efciency of TAL data program-
ming)? 

• Can drag-and-link interactions reduce the number of iterations 
to refne key events (help defne key events accurately)? 

2The study has been approved by State Key Lab of CAD&CG, Zhejiang University. 
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Table 1: Model performance comparison with fully supervised method and single-frame supervised method. 

mAP@tIoU avg-mAP 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.7 

SF-Net w/ full label 
SF-Net w/ single-frame label 

ProTAL 

1.000 
0.982 
0.909 

0.992 
0.909 
0.909 

0.953 
0.836 
0.892 

0.897 
0.767 
0.888 

0.834 
0.613 
0.854 

0.663 
0.327 
0.728 

0.494 
0.116 
0.596 

0.833 
0.650 
0.825 

Figure 6: More usage examples. For “high jump,” users can consider the direction between the head and the crossbar; for “golf 
swing,” users can examine the direction and contact relation between the clubhead and the ball; and for “arm wrestling” and 
“standing ab twist,” users can focus on the direction relation and relative distance between the joints. 

7.1 Participants 
A total of 12 action annotators (A1–A12, Age: 22–28) were recruited 
for the study, comprising both male and female participants. The 
participants are data analysts for various sports, with extensive 
expertise in annotating action data for purposes including quanti-
tative analysis, visualization, and model training. Specifcally, for 
model training purposes, eight participants had previously engaged 
in annotation for more than three projects, while four had engaged 
in at least one. All participants understood the TAL task setting and 
the deep learning-based TAL model training workfow, enabling 
them to provide valuable insights into the framework and system. 
They had no involvement in the preceding formative studies. For the 
subsequent tasks, the participants were randomly divided into two 
groups (G1 and G2), with six participants in each group. The study 
was conducted on a PC with a 32-inch monitor in the laboratory, 
and each participant received a compensation of $15. 

7.2 Procedures 
To assess how efectively ProTAL helps users translate abstract key 
event concepts into accurate, rule-based defnitions, we compared 
it with a baseline system. Unlike ProTAL’s drag-and-link interface, 
the baseline employs a form-based interface for key event defni-
tion, as shown in Figure 8. In this interface, each row represents a 
constraint, structured as a 5-tuple: (Element A, Element B, Relation 
Type, Parameter 1, Parameter 2). Users set constraints by selecting 
visual elements and relation types from drop-down menus and 
inputting relevant parameters. For instance, to defne a direction 
relation such as “the angle of Element A relative to Element B is 
between 60 and 120 degrees”, the users select “Element B,” “Element 
A,” and “direction,” then specifes the angle range by entering the 
numerical values “60” and “120.” 

We designed four tasks, each involving the defning of key events 
in a foor exercise action (either “turns” or “tumbling”) using one of 
the two systems (ProTAL or baseline). So, the four tasks were: (1) 
ProTAL-turns, (2) baseline-turns, (3) ProTAL-tumbling, and (4) 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan He et al. 

Figure 7: User study procedure. The user study was conducted in three phases. The initial phase comprised a background 
introduction. The subsequent phase involved the completion of two tasks, the frst of which defned key events of “turns” and 
the second of which defned key events of “tumbling” in foor exercise. Participants were required to complete the tasks using 
diferent systems according to their group. Finally, a post-task questionnaire and an interview were conducted. 

Figure 8: The baseline system employs a form-based interface 
for key event defnition. 

baseline-tumbling. These two single-human actions were selected 
for two reasons: frst, to reduce the efort required to understand the 
key events so participants can focus on the interaction and second, 
to ensure a comparable level of complexity in defning key events for 
both actions. Moreover, since the interactions designed for human-
and object-related visual elements are identical, the study results 
are expected to remain consistent across diferent action types. 
Group G1 was asked to complete tasks 1 and 4 in sequence, while 
group G2 was assigned tasks 2 and 3 in sequence. This ensured that 
each participant experienced both systems and diferent actions for 
each system. This was necessary because defning the same key 
event with another system would introduce bias. Additionally, the 
system order was alternated between groups to maintain fairness 
in comparison. The study for each participant was comprised of 
three phases (Figure 7): 

Phase 1. Background Introduction (5mins). The frst phase in-
volved introducing key concepts to explain how data programming 
works for TAL, ensuring that participants developed a comprehen-
sive understanding of the key event and the distinction between 
traditional data annotation and the data programming paradigm, 
thus preparing them for the tasks ahead. 

Phase 2. Two Tasks (40mins). Each participant was required to 
complete two tasks in sequence. Before each task, we introduced 
the system and the action involved in the task. Participants were 
shown an video collected from FineGym [51] containing at least 
two instances of the action, with the action locations marked in the 
timeline. To minimize the impact of varying levels of participants’ 
familiarity with the actions, we simplifed the data programming 
task. First, participants familiarized themselves with the action in 
the video, after which we provided a general description of the key 
event directly. For “turns” action, the two instances in the video 
involved the athlete lifting her left leg to a near-horizontal position 
while rotating her body. For the “tumbling” task, the key event was 
the change in the athlete’s torso direction. Participants were then 
asked to defne the key events and generate labels on the given 
video using the assigned system. Each task was considered complete 
when the generated labels meets a specifed quality (accuracy ≥ 0.8 
and recall ≥ 0.2). To ensure balanced efort, the completion time 
(≤ 15 minutes) and the number of iterations (≤ 5) were capped to 
prevent participants from overthinking or defning key events too 
casually. 

Phase 3. Post-task Questionnaire and Interview (15mins). 
After completing the two tasks, participants were asked to fll out 
a questionnaire to rate their experiences with the two systems. 
Following this, an interview was conducted to gather detailed user 
feedback on the two systems. 

7.3 Research Data Collection and Analysis 
To address the formulated research questions, a diverse set of data 
was collected for analysis, encompassing both quantitative and 
qualitative, as well as subjective and objective measures. Subjective 
data included questionnaire responses and interviews from the 12 
participants. 

Questionnaire. The questionnaire comprised two main sections. 
The frst section focused on a comparative evaluation of the two 
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systems. To explore whether the drag-and-link interaction enhances 
usability, six key aspects were derived from the ten questions in 
the System Usability Scale (SUS). Participants rated these aspects 
on a comparative 7-point scale ranging from “System A (baseline) 
much better” to “no diference” to “System B (our system) much 
better.” The aspects included: overall performance, refecting the 
user’s overall experience with the system; easy to use, indicating the 
ease of use of the system; intuitive, assessing functional consistency 
and learning intuitiveness; cognitive efort, measuring the cognitive 
load imposed on the users by the system; physical efort, evaluating 
the physical burden during operation; practicality, determining 
whether the system meets the user’s practical needs. The second 
section required participants to rate specifc interaction designs in 
our system, focusing on node (visual element) manipulation and 
constraint setting. These ratings were collected using a 7-point 
Likert scale. All responses were gathered for subsequent statistical 
analysis. 

Interview. The interview focused on three topics: 1) the strengths 
and weaknesses of the two systems; 2) the underlying reasons be-
hind participants’ behaviors that difered from others during the 
tasks; and 3) suggestions for improving the system and framework. 
All interviews were recorded and transcribed for analysis. Feedback 
was categorized according to the research questions and interview 
topics, then reviewed and discussed by three coauthors. Key results 
were subsequently summarized. 

For objective data, we recorded the entire process of the 12 par-
ticipants performing the tasks and extracted relevant data metrics 
for analysis. Given that the label quality was required to meet pre-
defned standards, the metrics analyzed focused on two aspects: 
task completion time and the number of iterations required to com-
plete each task. These two metrics correspond to the two research 
questions. 

Completion Time. To analyze task completion times, we used 
a paired t-test to compare the diferences in completion times for 
the tasks completed on the two systems by the same group of 
participants. First, we ran a Shapiro-Wilk test at a signifcance level 
of 0.05 to check the normality of the paired diferences. Given that 
the diferences followed a normal distribution, we calculated the 
mean and standard deviation for both sets, along with the t-value 
and p-value for the comparison. 

Number of Iterations. The number of iterations refers to the 
total number of times users generated labels based on the defned 
key events and review labels for refnement until the required label 
quality was achieved. The analysis for the number of iterations 
followed the same procedure as that used for task completion time. 

7.4 Results and Feedback 
7.4.1 Drag-and-link interaction enhances usability compared to the 
baseline system. Participants’ ratings of the overall comparison 
between two systems are presented in Figure 9C. For overall ex-
perience, 83.3% (10/12) of participants preferred our system over 
the baseline, while only 16.7% (2/12) rated the baseline as “slightly 
better”. Regarding interaction and visual encoding, 10 participants 
found our system “easier to use” and “more intuitive,” whereas 2 
participants, A4 and A10, who were highly familiar with gymnas-
tics and the given actions, confdently defned the key events and 

found the baseline smooth to use. A4 noted that since he already 
knew exactly how to defne the key event and what angle to set, he 
did not need the drag-and-link feature. 

In terms of cognitive efort, 83.3% (10/12) of participants felt that 
our system required less cognitive efort. A1 and A12 noted that 
translating the desired direction into a numerical representation 
with the baseline was cognitively demanding. A11 observed that 
using the baseline often resulted in setting angles “based on intuition 
and not sure.” A7 emphasized that handling complex actions would 
be challenging with the baseline. Conversely, A2 and A4 mentioned 
that with a deep understanding of the action, the baseline could also 
be used efectively. Regarding physical efort, there was no clear 
preference between the two systems. A2 noted that the baseline 
interaction was also straightforward, the primary limitation of it is 
its lack of ability to facilitate interactive exploration. For practicality, 
all participants expressed a preference for using our system in 
their practical workfows compared to the baseline. These fndings 
demonstrate that our system is more usable than the baseline, due 
to the introduction of the drag-and-link interaction. 

7.4.2 The interaction design for node manipulation and constraint 
seting are intuitive. Most participants provided positive feedback 
on the manipulation of nodes representing human- and object-
related visual elements, as shown in Figure 9D. However, there 
was a neutral rating regarding ease of use, with A2 suggesting, 
“When dragging the entire human skeleton as a whole, it is easier to 
use and understand using a key combination to distinguish it from 
dragging individual nodes.” Regarding constraint setting, most par-
ticipants also gave favorable ratings for the interaction design. A1 
highlighted the usefulness of the mode switch feature (Figure 3C1), 
noting that when the angle range is narrow, such as 15 degrees, 
the arc representing the range is small, making it somewhat chal-
lenging to drag. However, by switching the display mode, this issue 
was efectively resolved. Additionally, all participants found that 
setting a frame as the canvas background was highly useful, as it 
shows placement of visual elements and provided intuitive cues for 
setting constraints. 

7.4.3 Drag-and-link interaction enhances eficiency in TAL data 
programming. Regarding the frst research question, a paired t-test 
comparing task completion times between the two systems revealed 
that participants completed tasks faster using our system compared 
to baseline (� = 3.04, � < 0.05). The average completion time with 
our system was 518.8s (�� = 172.8), whereas the baseline required 
622.1s (�� = 249.4), shown as Figure 9A. These results demonstrate 
that the drag-and-link interaction improves efciency in TAL data 
programming. Additionally, both times were well within the al-
lotted 15 minutes (900s), indicating that participants were able to 
understand and adapt to the data programming workfow and the 
constraint-setting logic with ease. Furthermore, All participants 
highlighted our system’s ability to directly compare the defned 
constraints with a selected frame, which allows them to modify the 
constraints more efciently to flter or retrieve some frames. A1 
and A3 emphasized that the constraint copy feature also speeds 
up the process, noting that constraints are often similar between 
states. 
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Figure 9: Quantitative results. (A) and (B) show the mean values of task completion time and the number of iterations, 
respectively, with error bars indicating the 95% confdence interval. (C) presents users’ overall comparative ratings of our 
system versus the baseline. (D) and (E) display ratings for the interaction design of node manipulation and constraint setting in 
our system, respectively. 

7.4.4 Drag-and-link interaction helps define key events accurately. 
The paired t-test revealed a signifcant reduction in the number of 
iterations required when using our system compared to baseline 
(� = 2.60, � < 0.05). In this study, the maximum number of iterations 
was capped at 5, with values ranging from 1 to 5. The average 
number of iterations for tasks completed with our system was 
1.7 (�� = 0.9), compared to 2.8 (�� = 1.3) with the baseline, as 
shown in Figure 9B. These results indicate that participants required 
fewer iterations to complete the key event defnitions using our 
system than with the baseline. With our system, 50% (6/12) of the 
participants completed the task in a single iteration, while only 
25% (3/12) achieved this using the baseline. This suggests that the 
drag-and-link interaction enables users to defne more accurate 
rules in the initial iteration. Furthermore, excluding cases with only 
one iteration, the average number of iterations with our system 
was 2.3, compared to 3.3 for the baseline, highlighting that the 
drag-and-link interaction facilitates more precise rule modifcations. 
These fndings show that the drag-and-link interface provides a 
more accurate approach to defne key events, answering the second 
research question. 

7.4.5 Individuals displayed a diversity of paterns of behavior and 
cognitive processes. During the tasks, notable diversity was ob-
served in the way participants defned key events. For example, in 
terms of constraint setting, A1 and A2 initially set a wide angle 
range for direction constraints and then narrowed it in subsequent 

iterations. In contrast, A3 and A6 took the opposite approach. A1 
indicated a preference for initially relaxing the constraints and then 
tightening them to eliminate incorrect frames, while A2 empha-
sized the importance of ensuring a high recall rate at the beginning. 
In contrast, A3 and A6 prioritized accuracy and then sought to 
improve recall. From the perspective of visual element selection, 
A6 and A12 found and attempted to defne diferent versions of 
the key event defnitions for the tumbling action. They focused on 
the direction of the person’s feet and head, defning more complex 
but efective key events. This phenomenon is consistent with the 
nature of key events, where diferent users may have diferent inter-
pretations of the same action. For any action, there may be several 
reasonable key events to defne. 

7.4.6 The system exhibits significant potential for improvement. 
During the interviews, participants agreed that ProTAL ofers a 
promising solution to the high cost of action annotation and pro-
vided several suggestions for improvement to address its perceived 
weaknesses and improve usability. Three participants expressed 
concern about the numerical accuracy of the constraints, especially 
since they had previously annotated precise data. They recom-
mended combining drag-and-link interaction with direct numerical 
control in the baseline system to enhance numerical accuracy. A8 
suggested implementing an adsorption efect to adjust the direction 
range to improve interaction efciency and precision. Currently, 



ProTAL: A Drag-and-Link Video Programming Framework for Temporal Action Localization CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

our system highlights the generated labels in the Dataset View, al-
lowing users to review and adjust constraints for mislabeled frames. 
A1 suggested further refnements, such as highlighting specifc 
regions within the mislabeled frames that do not meet the defned 
constraints. This feature would eliminate the need for users to man-
ually identify which constraints caused errors. A7 recommended 
that the system automatically update constraints based on mis-
labeled frames. In addition, A1, A7, and A8 suggested that the 
integration of language models could signifcantly improve the ef-
ciency of labeling by recommending potential constraint candidates 
when defning key events. 

8 Discussion 
In this section, we refect on our interactive video programming 
framework and the prototype system, summarizing the implica-
tions we learned. We also discuss the feasibility of ProTAL, explore 
possible future research directions, and outline the limitations of 
current research based on user feedback and observations. 

8.1 Implications for Designing Video 
Programming Framework 

The efectiveness of ProTAL and the usability of the prototype 
system are demonstrated, highlighting the potential to inspire the 
design of data programming frameworks for other video tasks. 
• Identify the appropriate constraint space for new video 
programming tasks. In this paper, our goal is to develop a video 
programming framework for TAL. We began by decomposing 
actions into fner-grained key events, defning them through 
changes in the relations between visual elements, which serve 
as labeling functions in data programming. To better understand 
the constraints involved in defning key events, we conducted 
a workshop study that led to the derivation of the constraint 
space. This space guided the implementation of the prototype 
system, which was successfully applied to practical scenarios. 
However, this constraint space may not encompass all video 
tasks. When designing video programming frameworks for other 
tasks, it is crucial to carefully derive the constraint space for 
them. For instance, when developing a system for higher-level 
event recognition, such as tactical analysis in team sports [35], 
the constraint spaces should be extended to encompass lineup 
information, player roles, etc. 

• Decomposing and simplifying data programming objects 
for highly complex tasks. Data programming is being applied 
to increasingly complex tasks and data, moving from text to im-
ages and from video classifcation to action localization. However, 
the complexity that rules can handle is not keeping pace with 
the growing complexity of tasks and data. In addition, the rules 
must remain simple enough, as overly complex rules would make 
direct annotation more efcient than data programming. There-
fore, when extending video programming to more complex tasks, 
it is essential to decompose complicated programming objects, 
such as decomposing actions into key events with a simpler struc-
ture and programming key events. Such decomposed objects can 
be defned by rules of manageable complexity, facilitating data 
programming. Furthermore, advanced models are needed to use 
these weak labels for efective model training. 

8.2 Potential of ProTAL 
We refect on the design and potential of the framework and system, 
focusing on adaptability and scalability. 

• Adaptability to broader applications. Although ProTAL is 
specifcally designed for TAL, its drag-and-link interaction design, 
along with its visual encoding of visual elements, human poses, 
and constraints between them, can be extended to other tasks 
involving actions or interactive events, such as action quality 
scoring and spatial action segmentation. 

• Efciency in handling larger datasets. ProTAL efectively 
scales with dataset size without increasing annotator workload. 
The annotator’s time cost remains consistent as the dataset size 
grows, since they only need to defne key events. ProTAL then au-
tomatically applies these defnitions to match all frames, eliminat-
ing the need for additional manual intervention. This efciency 
makes ProTAL a viable tool for large-scale video datasets. 

• Extension to higher-dimensional scenarios. Although cur-
rently focused on video data, ProTAL can be expanded to han-
dle 3D [7] or even 4D scenarios, such as those in virtual real-
ity [36, 75] and motion capture systems. By incorporating 3D 
detection or tracking modules, the system’s canvas can be ex-
tended to defne key events in the 3D space. This extension opens 
opportunities for annotating complex interactions and actions 
within immersive environments. 

8.3 Limitations & Future Work 
8.3.1 Current limitations of ProTAL. While ProTAL has proven 
efective for temporal annotation across various types of actions, 
it may face challenges in complex in-the-wild scenarios. Firstly, 
dense and overlapping objects in videos can complicate the recogni-
tion and extraction of visual elements, thereby disrupting the data 
programming workfow. Changes in viewpoint present another 
challenge. In cases where the video dataset features distinct view-
points, such as the two viewpoints in the table tennis match videos 
discussed in section 6, users can defne separate key events for each 
viewpoint. However, dynamic or excessively varied viewpoints 
may require viewpoint alignment or defning key events within a 
3D environment to ensure consistency. Additionally, videos shot 
from a frst-person perspective introduce unique complexities, such 
as handling the hands, body, or other visible parts of the shooter, 
which may require tailored approaches. Further exploration will be 
conducted to address these limitations. 

8.3.2 Future work. Moreover, there are several opportunities for 
future work: 

• Expanding the space of constraints for greater fexibility. 
Currently, ProTAL provides a set of constraints based on the 
relations between visual elements. However, in order to distin-
guish actions in a more fne-grained way, such as distinguishing 
between tumbling actions on the ground and in the air, ProTAL 
needs to support a larger constraint space. This extension would 
allow users to defne more nuanced actions and handle com-
plicated action variations, further improving the accuracy and 
fexibility of action annotation. 
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• Domain knowledge-driven constraint recommendation. 
Our user study has shown that users may have diferent cog-
nitive understandings of actions, and users who have a deeper 
understanding of specifc actions can defne the key event more ef-
fciently. Therefore, ProTAL can beneft from integrating domain 
knowledge to automatically recommend appropriate constraints 
based on the specifc action. By integrating expertise in diferent 
actions, ProTAL can guide users to select constraints that are 
more appropriate for their tasks, thus reducing cognitive load 
and improving the accuracy of the annotation process. 

• Integration with large multimodal models. Incorporating 
large multimodal models into ProTAL could enable more ad-
vanced AI-powered features. Using video, image, and text data, 
multimodal models could automatically suggest key events and 
constraints based on the context of the action, simplifying the 
process of defning key events. Furthermore, large multimodal 
models ofer the potential to integrate ProTAL’s visual element 
extraction and rule-based frame matching steps. For example, 
users could enter rules in natural language along with a frame, 
and the models could determine whether the frame satisfes those 
rules, further increasing fexibility. 

9 Conclusion 
We present ProTAL, a novel video programming framework de-
signed for TAL. The framework addresses the signifcant challenge 
of decomposing actions into meaningful substructures by decom-
posing actions into key events that are easier to defne and recog-
nize. ProTAL then presents a drag-and-link interaction design that 
allows users to defne key events through intuitive interactions. 
These key event defnitions, which constrain relations between 
visual elements, serve as data programming rules that generate 
frame-wise action labels for large-scale unlabeled videos. With 
these labels, a semi-supervised method is used to efectively train 
TAL models. 

Based on the proposed framework, a system was implemented. 
The efectiveness and usability of the implemented system in TAL 
annotation and training was demonstrated through a practical us-
age scenario and a user study. Feedback from participants high-
lighted the design of the drag-and-link interaction. These results 
also provide valuable guidance for the development of future video 
programming frameworks. 

Acknowledgments 
This work was supported by NSFC (U22A2032) and Key Scientifc 
Research Project of the Department of Education of Guangdong 
Province (2024ZDZX3012). The author also gratefully acknowl-
edges the support of Zhejiang University Education Foundation 
Qizhen Scholar Foundation. 

References 
[1] Maya Antoun and Daniel Asmar. 2023. Human object interaction detection: 

Design and survey. Image and Vision Computing 130, C (2023), 104617. https: 
//doi.org/10.1016/J.IMAVIS.2022.104617 

[2] Stephen H. Bach, Bryan Dawei He, Alexander Ratner, and Christopher Ré. 2017. 
Learning the Structure of Generative Models without Labeled Data. In Proceedings 
of the 34th International Conference on Machine Learning. 273–282. 

[3] Djamila Romaissa Beddiar, Brahim Nini, Mohammad Sabokrou, and Abdenour 
Hadid. 2020. Vision-based human activity recognition: a survey. Multimedia Tools 

and Applications 79, 41-42 (2020), 30509–30555. https://doi.org/10.1007/S11042-
020-09004-3 

[4] João Carreira and Andrew Zisserman. 2017. Quo Vadis, Action Recognition? A 
New Model and the Kinetics Dataset. In 2017 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR). 4724–4733. https://doi.org/10.1109/CVPR.2017. 
502 

[5] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A. Ross, Jia 
Deng, and Rahul Sukthankar. 2018. Rethinking the Faster R-CNN Architecture 
for Temporal Action Localization. In Proceedings of 2018 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition. 1130–1139. https://doi.org/10.1109/ 
CVPR.2018.00124 

[6] Changjian Chen, Jiashu Chen, Weikai Yang, Haoze Wang, Johannes Knittel, 
Xibin Zhao, Stefen Koch, Thomas Ertl, and Shixia Liu. 2024. Enhancing Single-
Frame Supervision for Better Temporal Action Localization. IEEE Transactions 
on Visualization and Computer Graphics 30, 6 (2024), 2903–2915. https://doi.org/ 
10.1109/TVCG.2024.3388521 

[7] Lu Chen, Sida Peng, and Xiaowei Zhou. 2021. Towards efcient and photorealistic 
3D human reconstruction: A brief survey. Visual Informatics 5, 4 (2021), 11–19. 
https://doi.org/10.1016/j.visinf.2021.10.003 

[8] Dongjin Choi, Sara Evensen, Çagatay Demiralp, and Estevam Hruschka. 2021. 
TagRuler: Interactive Tool for Span-Level Data Programming by Demonstration. 
In Companion Proceedings of the Web Conference 2021. 673–677. https://doi.org/ 
10.1145/3442442.3458602 

[9] L. Minh Dang, Kyungbok Min, Hanxiang Wang, Md. Jalil Piran, Cheol Hee Lee, 
and Hyeonjoon Moon. 2020. Sensor-based and vision-based human activity 
recognition: A comprehensive survey. Pattern Recognition 108 (2020), 107561. 
https://doi.org/10.1016/J.PATCOG.2020.107561 

[10] Dazhen Deng, Jiang Wu, Jiachen Wang, Yihong Wu, Xiao Xie, Zheng Zhou, Hui 
Zhang, Xiaolong (Luke) Zhang, and Yingcai Wu. 2021. EventAnchor: Reducing 
Human Interactions in Event Annotation of Racket Sports Videos. In Proceedings 
of the 2021 CHI Conference on Human Factors in Computing Systems. 73:1–73:13. 
https://doi.org/10.1145/3411764.3445431 

[11] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and Bo Dai. 2022. Revisiting 
Skeleton-based Action Recognition. In Proceedings of 2022 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR). 2959–2968. https://doi.org/ 
10.1109/CVPR52688.2022.00298 

[12] Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles, and Bernard Ghanem. 
2016. DAPs: Deep Action Proposals for Action Understanding. In Proceedings 
of Computer Vision – ECCV 2016. 768–784. https://doi.org/10.1007/978-3-319-
46487-9_47 

[13] Sara Evensen, Chang Ge, and Çagatay Demiralp. 2020. Ruler: Data Programming 
by Demonstration for Document Labeling. In Findings of the Association for 
Computational Linguistics: EMNLP 2020. 1996–2005. https://doi.org/10.18653/V1/ 
2020.FINDINGS-EMNLP.181 

[14] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos Niebles. 
2015. ActivityNet: A Large-Scale Video Benchmark for Human Activity Under-
standing. In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. 961–970. 

[15] Gueter Josmy Faure, Min-Hung Chen, and Shang-Hong Lai. 2023. Holistic 
Interaction Transformer Network for Action Detection. In 2023 IEEE/CVF Winter 
Conference on Applications of Computer Vision (WACV). 3329–3339. https://doi. 
org/10.1109/WACV56688.2023.00334 

[16] Yutong Feng, Jianwen Jiang, Ziyuan Huang, Zhiwu Qing, Xiang Wang, Shiwei 
Zhang, Mingqian Tang, and Yue Gao. 2021. Relation Modeling in Spatio-Temporal 
Action Localization. 

[17] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. 2017. Cascaded Boundary Re-
gression for Temporal Action Detection. In Proceedings of British Machine Vision 
Conference 2017. 

[18] Georgia Gkioxari, Ross B. Girshick, Piotr Dollár, and Kaiming He. 2018. Detecting 
and Recognizing Human-Object Interactions. In Proceedings of the IEEE conference 
on computer vision and pattern recognition. 8359–8367. https://doi.org/10.1109/ 
CVPR.2018.00872 

[19] C. Gu, C. Sun, D. A. Ross, C. Vondrick, C. Pantofaru, Y. Li, S. Vijayanarasimhan, 
G. Toderici, S. Ricco, R. Sukthankar, C. Schmid, and J. Malik. 2018. AVA: A 
Video Dataset of Spatio-Temporally Localized Atomic Visual Actions. In 2018 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 6047– 
6056. https://doi.org/10.1109/CVPR.2018.00633 

[20] Dongming Han, Jiacheng Pan, Xiaodong Zhao, and Wei Chen. 2021. NetV.js: 
A web-based library for high-efciency visualization of large-scale graphs and 
networks. Visual Informatics 5, 1 (2021), 61–66. https://doi.org/10.1016/j.visinf. 
2021.01.002 

[21] Jianben He, Xingbo Wang, Kam Kwai Wong, Xijie Huang, Changjian Chen, 
Zixin Chen, Fengjie Wang, Min Zhu, and Huamin Qu. 2024. VideoPro: A Visual 
Analytics Approach for Interactive Video Programming. 30, 1 (2024), 87–97. 
https://doi.org/10.1109/TVCG.2023.3326586 

[22] Md Naimul Hoque, Wenbin He, Arvind Kumar Shekar, Liang Gou, and Liu Ren. 
2023. Visual concept programming: A visual analytics approach to injecting 
human intelligence at scale. IEEE Transactions on Visualization and Computer 

https://doi.org/10.1016/J.IMAVIS.2022.104617
https://doi.org/10.1016/J.IMAVIS.2022.104617
https://doi.org/10.1007/S11042-020-09004-3
https://doi.org/10.1007/S11042-020-09004-3
https://doi.org/10.1109/CVPR.2017.502
https://doi.org/10.1109/CVPR.2017.502
https://doi.org/10.1109/CVPR.2018.00124
https://doi.org/10.1109/CVPR.2018.00124
https://doi.org/10.1109/TVCG.2024.3388521
https://doi.org/10.1109/TVCG.2024.3388521
https://doi.org/10.1016/j.visinf.2021.10.003
https://doi.org/10.1145/3442442.3458602
https://doi.org/10.1145/3442442.3458602
https://doi.org/10.1016/J.PATCOG.2020.107561
https://doi.org/10.1145/3411764.3445431
https://doi.org/10.1109/CVPR52688.2022.00298
https://doi.org/10.1109/CVPR52688.2022.00298
https://doi.org/10.1007/978-3-319-46487-9_47
https://doi.org/10.1007/978-3-319-46487-9_47
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.181
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.181
https://doi.org/10.1109/WACV56688.2023.00334
https://doi.org/10.1109/WACV56688.2023.00334
https://doi.org/10.1109/CVPR.2018.00872
https://doi.org/10.1109/CVPR.2018.00872
https://doi.org/10.1109/CVPR.2018.00633
https://doi.org/10.1016/j.visinf.2021.01.002
https://doi.org/10.1016/j.visinf.2021.01.002
https://doi.org/10.1109/TVCG.2023.3326586


ProTAL: A Drag-and-Link Video Programming Framework for Temporal Action Localization CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Graphics 29, 1 (2023), 74–83. https://doi.org/10.1109/TVCG.2022.3209466 
[23] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manipu-

lation interfaces. Human–computer interaction 1, 4 (1985), 311–338. 
[24] Tao Jiang, Peng Lu, Li Zhang, Ningsheng Ma, Rui Han, Chengqi Lyu, Yining Li, 

and Kai Chen. 2023. RTMPose: Real-Time Multi-Person Pose Estimation based 
on MMPose. https://doi.org/10.48550/ARXIV.2303.07399 

[25] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and R. Suk-
thankar. 2014. "THUMOS Challenge: Action Recognition with a Large Number 
of Classes". http://crcv.ucf.edu/THUMOS14/. 

[26] Pushpajit Khaire and Praveen Kumar. 2022. Deep learning and RGB-D based hu-
man action, human-human and human-object interaction recognition: A survey. 
Journal of Visual Communication and Image Representation 86, C (2022), 103531. 
https://doi.org/10.1016/J.JVCIR.2022.103531 

[27] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim, and Hyunwoo J. Kim. 
2021. HOTR: End-to-End Human-Object Interaction Detection with Transformers. 
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 
(2021), 74–83. https://doi.org/10.1109/CVPR46437.2021.00014 

[28] Kuno Kurzhals, Marcel Hlawatsch, Christof Seeger, and Daniel Weiskopf. 2017. 
Visual Analytics for Mobile Eye Tracking. IEEE Transactions on Visualization and 
Computer Graphics 23, 1 (2017), 301–310. https://doi.org/10.1109/TVCG.2016. 
2598695 

[29] Zhe Li, Yazan Abu Farha, and Jurgen Gall. 2021. Temporal Action Segmentation 
From Timestamp Supervision. In Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR). 8365–8374. https://doi.org/10. 
1109/CVPR46437.2021.00826 

[30] Zhengyang Li, Jie Li, and Xinying Ma. 2025. Representing multi-dimensional data 
as graph to visualize and analyze subset communities. Journal of Visualization 
(2025). https://doi.org/10.1007/s12650-025-01045-w 

[31] Qinying Liu, Zilei Wang, and Shenghai Rong. 2023. Improve Temporal Action 
Proposals using Hierarchical Context. Pattern Recognition 140 (2023), 109560. 
https://doi.org/10.1016/j.patcog.2023.109560 

[32] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan 
Li, Jianwei Yang, Hang Su, Jun Zhu, et al. 2023. Grounding dino: Marrying 
dino with grounded pre-training for open-set object detection. arXiv preprint 
arXiv:2303.05499 (2023). 

[33] Shuming Liu, Chen-Lin Zhang, Chen Zhao, and Bernard Ghanem. 2023. End-to-
End Temporal Action Detection with 1B Parameters Across 1000 Frames. arXiv 
preprint arXiv: 2311.17241 (2023), 18591–18601. 

[34] Yuan Liu, Jingyuan Chen, Zhenfang Chen, Bing Deng, Jianqiang Huang, and 
Hanwang Zhang. 2021. The Blessings of Unlabeled Background in Untrimmed 
Videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR). 6176–6185. https://doi.org/10.1109/CVPR46437.2021.00611 

[35] Ziao Liu, Xiao Xie, Moqi He, Wenshuo Zhao, Yihong Wu, Liqi Cheng, Hui Zhang, 
and Yingcai Wu. 2024. Smartboard: Visual Exploration of Team Tactics with LLM 
Agent. IEEE Transactions on Visualization and Computer Graphics (2024), 1–11. 
https://doi.org/10.1109/TVCG.2024.3456200 

[36] Júlio Castro Lopes and Rui Pedro Lopes. 2024. Computer Vision in Augmented, 
Virtual, Mixed and Extended Reality environments—A bibliometric review. Visual 
Informatics 8, 4 (2024), 13–22. https://doi.org/10.1016/j.visinf.2024.11.002 

[37] Fan Ma, Linchao Zhu, Yi Yang, Shengxin Zha, Gourab Kundu, Matt Feiszli, and 
Zheng Shou. 2020. SF-Net: Single-Frame Supervision for Temporal Action Local-
ization. In Proceedings of Computer Vision - ECCV 2020 - 16th European Conference. 
420–437. https://doi.org/10.1007/978-3-030-58548-8_25 

[38] Ayana Murakami and Takayuki Itoh. 2025. Flexible optimization of hierarchical 
graph layout by genetic algorithm with various conditions. Journal of Visualiza-
tion 28, 1 (2025), 181–204. https://doi.org/10.1007/s12650-024-01018-5 

[39] Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, and Tao Xiang. 2022. Semi-supervised 
Temporal Action Detection with Proposal-Free Masking. In Proceedings of Com-
puter Vision – ECCV 2022. 663–680. https://doi.org/10.1007/978-3-031-20062-5_38 

[40] Phuc Nguyen, Ting Liu, Gautam Prasad, and Bohyung Han. 2018. Weakly Super-
vised Action Localization by Sparse Temporal Pooling Network. In Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6752– 
6761. https://doi.org/10.1109/CVPR.2018.00706 

[41] Phuc Nguyen, Deva Ramanan, and Charless Fowlkes. 2019. Weakly-Supervised 
Action Localization With Background Modeling. In Proceedings of 2019 IEEE/CVF 
International Conference on Computer Vision (ICCV). 5501–5510. https://doi.org/ 
10.1109/ICCV.2019.00560 

[42] Jorge Piazentin Ono, Arvi Gjoka, Justin Salamon, Carlos A. Dietrich, and Cláu-
dio T. Silva. 2019. HistoryTracker: Minimizing Human Interactions in Baseball 
Game Annotation. In Proceedings of the 2019 CHI Conference on Human Factors in 
Computing Systems. 63. https://doi.org/10.1145/3290605.3300293 

[43] Junting Pan, Siyu Chen, Mike Zheng Shou, Yu Liu, Jing Shao, and Hongsheng 
Li. 2021. Actor-Context-Actor Relation Network for Spatio-Temporal Action 
Localization. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 
2021, virtual, June 19-25, 2021. 464–474. https://doi.org/10.1109/CVPR46437.2021. 
00053 

[44] G. Paoletti, J. Cavazza, C. Beyan, and A. Del Bue. 2021. Subspace Clustering 
for Action Recognition with Covariance Representations and Temporal Pruning. 

In 2020 25th International Conference on Pattern Recognition (ICPR). 6035–6042. 
https://doi.org/10.1109/ICPR48806.2021.9412060 

[45] Jathushan Rajasegaran, Georgios Pavlakos, Angjoo Kanazawa, Christoph Feicht-
enhofer, and Jitendra Malik. 2023. On the Benefts of 3D Pose and Tracking for Hu-
man Action Recognition. In 2023 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 640–649. https://doi.org/10.1109/CVPR52729.2023.00069 

[46] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, 
and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with Weak 
Supervision. Proceedings of the VLDB Endowment 11, 3 (2017), 269–282. https: 
//doi.org/10.14778/3157794.3157797 

[47] Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash 
Pandey, and Christopher Ré. 2019. Training Complex Models with Multi-Task 
Weak Supervision. In Proceedings of the Thirty-Third AAAI Conference on Artifcial 
Intelligence. 4763–4771. https://doi.org/10.1609/AAAI.V33I01.33014763 

[48] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher 
Ré. 2016. Data Programming: Creating Large Training Sets, Quickly. In Advances 
in Neural Information Processing Systems, Vol. 29. 

[49] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, 
Xinyu Huang, Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie 
Yang, Hongyang Li, Qing Jiang, and Lei Zhang. 2024. Grounded SAM: Assembling 
Open-World Models for Diverse Visual Tasks. arXiv:2401.14159 [cs.CV] 

[50] Benjamin Renoust, Haolin Ren, and Guy Melançon. 2019. Animated Drag and 
Drop Interaction for Dynamic Multidimensional Graphs. arXiv preprint arXiv: 
1902.01564 (2019). 

[51] Dian Shao, Yue Zhao, Bo Dai, and Dahua Lin. 2020. FineGym: A Hierarchi-
cal Video Dataset for Fine-Grained Action Understanding. In 2020 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR). 2613–2622. 
https://doi.org/10.1109/CVPR42600.2020.00269 

[52] Dingfeng Shi, Yujie Zhong, Qiong Cao, Lin Ma, Jia Li, and Dacheng Tao. 2023. 
Temporal Action Localization with Enhanced Instant Discriminability. arXiv 
preprint arXiv: 2309.05590 (2023). 

[53] Dingfeng Shi, Yujie Zhong, Qiong Cao, Lin Ma, Jia Lit, and Dacheng Tao. 2023. 
TriDet: Temporal Action Detection with Relative Boundary Modeling. In Pro-
ceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR). 18857–18866. https://doi.org/10.1109/CVPR52729.2023.01808 

[54] Zheng Shou, Dongang Wang, and Shih-Fu Chang. 2016. Temporal Action Lo-
calization in Untrimmed Videos via Multi-stage CNNs. In Proceedings of 2016 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1049–1058. 
https://doi.org/10.1109/CVPR.2016.119 

[55] Alexandros Stergiou and Ronald Poppe. 2019. Analyzing human-human interac-
tions: A survey. Computer Vision and Image Understanding 188, C (2019), 102799. 
https://doi.org/10.1016/J.CVIU.2019.102799 

[56] Tan Tang, Yanhong Wu, Yingcai Wu, Lingyun Yu, and Yuhong Li. 2022. Video-
Moderator: A Risk-aware Framework for Multimodal Video Moderation in E-
Commerce. IEEE Transactions on Visualization and Computer Graphics 28, 1 (2022), 
846–856. https://doi.org/10.1109/TVCG.2021.3114781 

[57] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. 2022. VideoMAE: Masked 
Autoencoders are Data-Efcient Learners for Self-Supervised Video Pre-Training. 
In Advances in Neural Information Processing Systems. 10078–10093. 

[58] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. 
2015. Learning Spatiotemporal Features with 3D Convolutional Networks. In 
Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). 
4489–4497. https://doi.org/10.1109/ICCV.2015.510 

[59] Paroma Varma, Frederic Sala, Ann He, Alexander Ratner, and Christopher Ré. 
2019. Learning Dependency Structures for Weak Supervision Models. In Proceed-
ings of the 36th International Conference on Machine Learning. 6418–6427. 

[60] Binglu Wang, Yongqiang Zhao, Le Yang, Teng Long, and Xuelong Li. 2024. Tem-
poral Action Localization in the Deep Learning Era: A Survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 46, 4 (2024), 2171–2190. 
https://doi.org/10.1109/TPAMI.2023.3330794 

[61] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool. 2017. UntrimmedNets 
for Weakly Supervised Action Recognition and Detection. In Proceedings of 2017 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6402–6411. 
https://doi.org/10.1109/CVPR.2017.678 

[62] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and 
Luc Van Gool. 2019. Temporal Segment Networks for Action Recognition in 
Videos. IEEE Transactions on Pattern Analysis and Machine Intelligence 41, 11 
(2019), 2740–2755. https://doi.org/10.1109/TPAMI.2018.2868668 

[63] Tiancai Wang, Tong Yang, Martin Danelljan, Fahad Shahbaz Khan, Xiangyu 
Zhang, and Jian Sun. 2020. Learning Human-Object Interaction Detection Using 
Interaction Points. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR). 4115–4124. https://doi.org/10.1109/CVPR42600. 
2020.00417 

[64] Yanyan Wang, Zhanning Bai, Zhifeng Lin, Xiaoqing Dong, Yingchaojie Feng, 
Jiacheng Pan, and Wei Chen. 2021. G6: A web-based library for graph visualization. 
Visual Informatics 5, 4 (2021), 49–55. https://doi.org/10.1016/j.visinf.2021.12.003 

[65] Bingjie Xu, Yongkang Wong, Junnan Li, Qi Zhao, and Mohan S. Kankanhalli. 2019. 
Learning to Detect Human-Object Interactions With Knowledge. In Proceedings of 

https://doi.org/10.1109/TVCG.2022.3209466
https://doi.org/10.48550/ARXIV.2303.07399
http://crcv.ucf.edu/THUMOS14/
https://doi.org/10.1016/J.JVCIR.2022.103531
https://doi.org/10.1109/CVPR46437.2021.00014
https://doi.org/10.1109/TVCG.2016.2598695
https://doi.org/10.1109/TVCG.2016.2598695
https://doi.org/10.1109/CVPR46437.2021.00826
https://doi.org/10.1109/CVPR46437.2021.00826
https://doi.org/10.1007/s12650-025-01045-w
https://doi.org/10.1016/j.patcog.2023.109560
https://doi.org/10.1109/CVPR46437.2021.00611
https://doi.org/10.1109/TVCG.2024.3456200
https://doi.org/10.1016/j.visinf.2024.11.002
https://doi.org/10.1007/978-3-030-58548-8_25
https://doi.org/10.1007/s12650-024-01018-5
https://doi.org/10.1007/978-3-031-20062-5_38
https://doi.org/10.1109/CVPR.2018.00706
https://doi.org/10.1109/ICCV.2019.00560
https://doi.org/10.1109/ICCV.2019.00560
https://doi.org/10.1145/3290605.3300293
https://doi.org/10.1109/CVPR46437.2021.00053
https://doi.org/10.1109/CVPR46437.2021.00053
https://doi.org/10.1109/ICPR48806.2021.9412060
https://doi.org/10.1109/CVPR52729.2023.00069
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.1609/AAAI.V33I01.33014763
https://arxiv.org/abs/2401.14159
https://doi.org/10.1109/CVPR42600.2020.00269
https://doi.org/10.1109/CVPR52729.2023.01808
https://doi.org/10.1109/CVPR.2016.119
https://doi.org/10.1016/J.CVIU.2019.102799
https://doi.org/10.1109/TVCG.2021.3114781
https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.1109/TPAMI.2023.3330794
https://doi.org/10.1109/CVPR.2017.678
https://doi.org/10.1109/TPAMI.2018.2868668
https://doi.org/10.1109/CVPR42600.2020.00417
https://doi.org/10.1109/CVPR42600.2020.00417
https://doi.org/10.1016/j.visinf.2021.12.003


CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019–2028. 
https://doi.org/10.1109/CVPR.2019.00212 

[66] Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. 2024. ViTPose: Simple 
Vision Transformer Baselines for Human Pose Estimation. In Proceedings of the 
36th International Conference on Neural Information Processing Systems. 38571– 
38584. 

[67] Katsu Yamane and Yoshihiko Nakamura. 2003. Natural Motion Animation 
through Constraining and Deconstraining at Will. IEEE Trans. Vis. Comput. 
Graph. 9, 3 (2003), 352–360. https://doi.org/10.1109/TVCG.2003.1207443 

[68] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial Temporal Graph Convo-
lutional Networks for Skeleton-Based Action Recognition. Proceedings of AAAI 
Conference on Artifcial Intelligence, 7444–7452. https://doi.org/10.1609/aaai.v32i1. 
12328 

[69] Le Yang, Junwei Han, Tao Zhao, Tianwei Lin, Dingwen Zhang, and Jianxin Chen. 
2022. Background-Click Supervision for Temporal Action Localization. IEEE 
Transactions on Pattern Analysis and Machine Intelligence 44, 12 (2022), 9814–9829. 
https://doi.org/10.1109/TPAMI.2021.3132058 

[70] Bangpeng Yao and Li Fei-Fei. 2010. Modeling mutual context of object and 
human pose in human-object interaction activities. In 2010 IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition. 17–24. https://doi.org/ 
10.1109/CVPR.2010.5540235 

[71] Runhao Zeng, Wenbing Huang, Chuang Gan, Mingkui Tan, Yu Rong, Peilin 
Zhao, and Junzhou Huang. 2019. Graph Convolutional Networks for Temporal 
Action Localization. In Proceedings of 2019 IEEE/CVF International Conference on 
Computer Vision (ICCV). 7093–7102. https://doi.org/10.1109/ICCV.2019.00719 

[72] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong, P. Zhao, Junzhou Huang, 
and Chuang Gan. 2022. Graph Convolutional Module for Temporal Action Local-
ization in Videos. IEEE Transactions on Pattern Analysis and Machine Intelligence 
44, 10 (2022), 6209–6223. https://doi.org/10.1109/TPAMI.2021.3090167 

[73] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, 
Shaochen Zhong, and Xia Hu. 2023. Data-centric Artifcial Intelligence: A Survey. 
arXiv preprint arXiv: 2303.10158 (2023). 

He et al. 

[74] Chen-Lin Zhang, Jianxin Wu, and Yin Li. 2022. ActionFormer: Localizing Mo-
ments of Actions with Transformers. In Proceedings of Computer Vision - ECCV 
2022 - 17th European Conference. 492–510. https://doi.org/10.1007/978-3-031-
19772-7_29 

[75] Yue Zhang, Zhenyuan Wang, Jinhui Zhang, Guihua Shan, and Dong Tian. 2023. 
A survey of immersive visualization: Focus on perception and interaction. Visual 
Informatics 7, 4 (2023), 22–35. https://doi.org/10.1016/j.visinf.2023.10.003 

[76] Chen Zhao, Ali Thabet, and Bernard Ghanem. 2021. Video Self-Stitching Graph 
Network for Temporal Action Localization. In 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV). 13638–13647. https://doi.org/10.1109/ICCV48922. 
2021.01340 

[77] Chen Zhao, Ali K. Thabet, and Bernard Ghanem. 2021. Video Self-Stitching 
Graph Network for Temporal Action Localization. In Proceedings of 2021 IEEE/CVF 
International Conference on Computer Vision (ICCV). 13638–13647. https://doi. 
org/10.1109/ICCV48922.2021.01340 

[78] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaoou Tang, and Dahua 
Lin. 2017. Temporal Action Detection with Structured Segment Networks. In 
Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). 
2933–2942. https://doi.org/10.1109/ICCV.2017.317 

[79] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaoou Tang, and Dahua 
Lin. 2020. Temporal Action Detection with Structured Segment Networks. Inter-
national Journal of Computer Vision 128, 1 (2020), 74–95. https://doi.org/10.1007/ 
S11263-019-01211-2 

[80] Qian Zhou, David Ledo, George Fitzmaurice, and Fraser Anderson. 2024. TimeTun-
nel: Integrating Spatial and Temporal Motion Editing for Character Animation 
in Virtual Reality. In Proceedings of the 2024 CHI Conference on Human Factors in 
Computing Systems. 101:1–101:17. https://doi.org/10.1145/3613904.3641927 

[81] Cheng Zou, Bohan Wang, Yue Hu, Junqi Liu, Qian Wu, Yu Zhao, Boxun Li, 
Chenguang Zhang, Chi Zhang, Yichen Wei, and Jian Sun. 2021. End-to-End 
Human Object Interaction Detection With HOI Transformer. In Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 
11825–11834. 

https://doi.org/10.1109/CVPR.2019.00212
https://doi.org/10.1109/TVCG.2003.1207443
https://doi.org/10.1609/aaai.v32i1.12328
https://doi.org/10.1609/aaai.v32i1.12328
https://doi.org/10.1109/TPAMI.2021.3132058
https://doi.org/10.1109/CVPR.2010.5540235
https://doi.org/10.1109/CVPR.2010.5540235
https://doi.org/10.1109/ICCV.2019.00719
https://doi.org/10.1109/TPAMI.2021.3090167
https://doi.org/10.1007/978-3-031-19772-7_29
https://doi.org/10.1007/978-3-031-19772-7_29
https://doi.org/10.1016/j.visinf.2023.10.003
https://doi.org/10.1109/ICCV48922.2021.01340
https://doi.org/10.1109/ICCV48922.2021.01340
https://doi.org/10.1109/ICCV48922.2021.01340
https://doi.org/10.1109/ICCV48922.2021.01340
https://doi.org/10.1109/ICCV.2017.317
https://doi.org/10.1007/S11263-019-01211-2
https://doi.org/10.1007/S11263-019-01211-2
https://doi.org/10.1145/3613904.3641927

	Abstract
	1 Introduction
	2 Related Work
	2.1 Temporal Action Localization
	2.2 Interactive Annotation of Video Data
	2.3 Data Programming

	3 Problem Formulation
	4 Design Considerations of ProTAL
	4.1 Literature Review
	4.2 Workshop Study
	4.3 Design Principle

	5 Framework of ProTAL
	5.1 Extraction of Action-Related Visual Element
	5.2 Key Event Definition and Label Generation
	5.3 TAL Model Training

	6 Interface Walkthrough: A Practical Scenario
	6.1 User Interface Overview
	6.2 Data Programming on Table Tennis Videos
	6.3 Evaluation of the Framework

	7 User Study
	7.1 Participants
	7.2 Procedures
	7.3 Research Data Collection and Analysis
	7.4 Results and Feedback

	8 Discussion
	8.1 Implications for Designing Video Programming Framework
	8.2 Potential of ProTAL
	8.3 Limitations & Future Work

	9 Conclusion
	Acknowledgments
	References



